Cargando…
Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit
Understanding the nature and formation of band gaps associated with the propagation of electromagnetic, electronic, or elastic waves in disordered materials as a function of system size presents fundamental and technological challenges. In particular, a basic question is whether band gaps in disorde...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913173/ https://www.ncbi.nlm.nih.gov/pubmed/36538478 http://dx.doi.org/10.1073/pnas.2213633119 |
_version_ | 1784885360838311936 |
---|---|
author | Klatt, Michael A. Steinhardt, Paul J. Torquato, Salvatore |
author_facet | Klatt, Michael A. Steinhardt, Paul J. Torquato, Salvatore |
author_sort | Klatt, Michael A. |
collection | PubMed |
description | Understanding the nature and formation of band gaps associated with the propagation of electromagnetic, electronic, or elastic waves in disordered materials as a function of system size presents fundamental and technological challenges. In particular, a basic question is whether band gaps in disordered systems exist in the thermodynamic limit. To explore this issue, we use a two-stage ensemble approach to study the formation of complete photonic band gaps (PBGs) for a sequence of increasingly large systems spanning a broad range of two-dimensional photonic network solids with varying degrees of local and global order, including hyperuniform and nonhyperuniform types. We discover that the gap in the density of states exhibits exponential tails and the apparent PBGs rapidly close as the system size increases for nearly all disordered networks considered. The only exceptions are sufficiently stealthy hyperuniform cases for which the band gaps remain open and the band tails exhibit a desirable power-law scaling reminiscent of the PBG behavior of photonic crystals in the thermodynamic limit. |
format | Online Article Text |
id | pubmed-9913173 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-99131732023-06-20 Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit Klatt, Michael A. Steinhardt, Paul J. Torquato, Salvatore Proc Natl Acad Sci U S A Physical Sciences Understanding the nature and formation of band gaps associated with the propagation of electromagnetic, electronic, or elastic waves in disordered materials as a function of system size presents fundamental and technological challenges. In particular, a basic question is whether band gaps in disordered systems exist in the thermodynamic limit. To explore this issue, we use a two-stage ensemble approach to study the formation of complete photonic band gaps (PBGs) for a sequence of increasingly large systems spanning a broad range of two-dimensional photonic network solids with varying degrees of local and global order, including hyperuniform and nonhyperuniform types. We discover that the gap in the density of states exhibits exponential tails and the apparent PBGs rapidly close as the system size increases for nearly all disordered networks considered. The only exceptions are sufficiently stealthy hyperuniform cases for which the band gaps remain open and the band tails exhibit a desirable power-law scaling reminiscent of the PBG behavior of photonic crystals in the thermodynamic limit. National Academy of Sciences 2022-12-20 2022-12-27 /pmc/articles/PMC9913173/ /pubmed/36538478 http://dx.doi.org/10.1073/pnas.2213633119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Klatt, Michael A. Steinhardt, Paul J. Torquato, Salvatore Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit |
title | Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit |
title_full | Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit |
title_fullStr | Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit |
title_full_unstemmed | Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit |
title_short | Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit |
title_sort | wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913173/ https://www.ncbi.nlm.nih.gov/pubmed/36538478 http://dx.doi.org/10.1073/pnas.2213633119 |
work_keys_str_mv | AT klattmichaela wavepropagationandbandtailsoftwodimensionaldisorderedsystemsinthethermodynamiclimit AT steinhardtpaulj wavepropagationandbandtailsoftwodimensionaldisorderedsystemsinthethermodynamiclimit AT torquatosalvatore wavepropagationandbandtailsoftwodimensionaldisorderedsystemsinthethermodynamiclimit |