Cargando…
Identifying Solitary Granulomatous Nodules from Solid Lung Adenocarcinoma: Exploring Robust Image Features with Cross-Domain Transfer Learning
SIMPLE SUMMARY: This retrospective study aimed to find suitable source domain data in cross-domain transfer learning to extract robust image features and build a model to preoperatively distinguish LGN from LAC in SPSNs. The experiment showed that, compared with other source domains (such as ImageNe...
Autores principales: | Feng, Bao, Chen, Xiangmeng, Chen, Yehang, Yu, Tianyou, Duan, Xiaobei, Liu, Kunfeng, Li, Kunwei, Liu, Zaiyi, Lin, Huan, Li, Sheng, Chen, Xiaodong, Ke, Yuting, Li, Zhi, Cui, Enming, Long, Wansheng, Liu, Xueguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913209/ https://www.ncbi.nlm.nih.gov/pubmed/36765850 http://dx.doi.org/10.3390/cancers15030892 |
Ejemplares similares
-
A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules
por: Chen, Xiangmeng, et al.
Publicado: (2020) -
Predicting lymphovascular invasion in clinically node-negative breast cancer detected by abbreviated magnetic resonance imaging: Transfer learning vs. radiomics
por: Feng, Bao, et al.
Publicado: (2022) -
Segmentation of small ground glass opacity pulmonary nodules based on Markov random field energy and Bayesian probability difference
por: Zhang, Shaorong, et al.
Publicado: (2020) -
A radiomics model to predict the invasiveness of thymic epithelial tumors based on contrast-enhanced computed tomography
por: Chen, Xiangmeng, et al.
Publicado: (2020) -
A brain-like classification method for computed tomography images based on adaptive feature matching dual-source domain heterogeneous transfer learning
por: Chen, Yehang, et al.
Publicado: (2022)