Cargando…
MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma
SIMPLE SUMMARY: As magnetic resonance (MR) intensities are acquired in arbitrary units, scans from different scanners are not directly comparable; thus, intensity normalization is essential. In this study, we assess the impact of normalization methods on prognostic radiomics models in primary and re...
Autores principales: | Salome, Patrick, Sforazzini, Francesco, Grugnara, Gianluca, Kudak, Andreas, Dostal, Matthias, Herold-Mende, Christel, Heiland, Sabine, Debus, Jürgen, Abdollahi, Amir, Knoll, Maximilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913466/ https://www.ncbi.nlm.nih.gov/pubmed/36765922 http://dx.doi.org/10.3390/cancers15030965 |
Ejemplares similares
-
MR-Class: A Python Tool for Brain MR Image Classification Utilizing One-vs-All DCNNs to Deal with the Open-Set Recognition Problem
por: Salome, Patrick, et al.
Publicado: (2023) -
The impact of tumor metabolic activity assessed by (18)F-FET amino acid PET imaging in particle radiotherapy of high-grade glioma patients
por: Waltenberger, Maria, et al.
Publicado: (2022) -
Deep Learning–based Automatic Lung Segmentation on
Multiresolution CT Scans from Healthy and Fibrotic Lungs in Mice
por: Sforazzini, Francesco, et al.
Publicado: (2022) -
Whole Blood Transcriptional Fingerprints of High-Grade Glioma and Longitudinal Tumor Evolution under Carbon Ion Radiotherapy
por: Knoll, Maximilian, et al.
Publicado: (2022) -
Impact of (18)F-FET PET on Target Volume Definition and Tumor Progression of Recurrent High Grade Glioma Treated with Carbon-Ion Radiotherapy
por: Debus, Charlotte, et al.
Publicado: (2018)