Cargando…
A Machine Learning-Based Online Prediction Tool for Predicting Short-Term Postoperative Outcomes Following Spinal Tumor Resections
SIMPLE SUMMARY: The overall incidence of spinal tumors in the United States was estimated to be 0.62 per 100,000 people. Surgical resection of spinal tumors intends to improve functional status, reduce pain, and, in some patients with isolated metastases or primary tumors, increase survival. Machine...
Autores principales: | Karabacak, Mert, Margetis, Konstantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913622/ https://www.ncbi.nlm.nih.gov/pubmed/36765771 http://dx.doi.org/10.3390/cancers15030812 |
Ejemplares similares
-
Interpretable machine learning models to predict short-term postoperative outcomes following posterior cervical fusion
por: Karabacak, Mert, et al.
Publicado: (2023) -
Prognosis Individualized: Survival predictions for WHO grade II and III gliomas with a machine learning-based web application
por: Karabacak, Mert, et al.
Publicado: (2023) -
Embracing Large Language Models for Medical Applications: Opportunities and Challenges
por: Karabacak, Mert, et al.
Publicado: (2023) -
The Advent of Generative Language Models in Medical Education
por: Karabacak, Mert, et al.
Publicado: (2023) -
Machine learning approaches for the prediction of postoperative complication risk in liver resection patients
por: Zeng, Siyu, et al.
Publicado: (2021)