Cargando…

RIPK1 Regulates Microglial Activation in Lipopolysaccharide-Induced Neuroinflammation and MPTP-Induced Parkinson’s Disease Mouse Models

Increasing evidence suggests a pivotal role of receptor-interacting protein kinase 1 (RIPK1), an initiator of necroptosis, in neuroinflammation. However, the precise role of RIPK1 in microglial activation remains unclear. In the present study, we explored the role of RIPK1 in lipopolysaccharide (LPS...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Do-Yeon, Leem, Yea-Hyun, Park, Jin-Sun, Park, Jung-Eun, Park, Jae-Min, Kang, Jihee Lee, Kim, Hee-Sun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913664/
https://www.ncbi.nlm.nih.gov/pubmed/36766759
http://dx.doi.org/10.3390/cells12030417
Descripción
Sumario:Increasing evidence suggests a pivotal role of receptor-interacting protein kinase 1 (RIPK1), an initiator of necroptosis, in neuroinflammation. However, the precise role of RIPK1 in microglial activation remains unclear. In the present study, we explored the role of RIPK1 in lipopolysaccharide (LPS)-induced neuroinflammation and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice by using RIPK1-specific inhibitors necrostatin-1 (Nec-1) and necrostatin-1 stable (Nec-1s). Nec-1/Nec-1s or RIPK1 siRNA inhibited the production of proinflammatory molecules and the phosphorylation of RIPK1-RIPK3-MLKL and cell death in LPS-induced inflammatory or LPS/QVD/BV6-induced necroptotic conditions of BV2 microglial cells. Detailed mechanistic studies showed that Nec-1/Nec-1s exerted anti-inflammatory effects by modulating AMPK, PI3K/Akt, MAPKs, and NF-κB signaling pathways in LPS-stimulated BV2 cells. Subsequent in vivo studies showed that Nec-1/Nec-1s inhibited microglial activation and proinflammatory gene expression by inhibiting the RIPK1 phosphorylation in the brains of LPS-injected mice. Furthermore, Nec-1/Nec-1s exert neuroprotective and anti-inflammatory effects in MPTP-induced PD mice. We found that p-RIPK1 is mainly expressed in microglia, and thus RIPK1 may contribute to neuroinflammation and subsequent cell death of dopaminergic neurons in MPTP-induced PD model mice. These data suggest that RIPK1 is a key regulator of microglial activation in LPS-induced neuroinflammation and MPTP-induced PD mice.