Cargando…
Robust Image Processing Framework for Intelligent Multi-Stage Malaria Parasite Recognition of Thick and Thin Smear Images
Malaria is a pressing medical issue in tropical and subtropical regions. Currently, the manual microscopic examination remains the gold standard malaria diagnosis method. Nevertheless, this procedure required highly skilled lab technicians to prepare and examine the slides. Therefore, a framework en...
Autores principales: | Aris, Thaqifah Ahmad, Nasir, Aimi Salihah Abdul, Mustafa, Wan Azani, Mashor, Mohd Yusoff, Haryanto, Edy Victor, Mohamed, Zeehaida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913904/ https://www.ncbi.nlm.nih.gov/pubmed/36766620 http://dx.doi.org/10.3390/diagnostics13030511 |
Ejemplares similares
-
Modified Global and Modified Linear Contrast Stretching Algorithms: New Colour Contrast Enhancement Techniques for Microscopic Analysis of Malaria Slide Images
por: Abdul-Nasir, Aimi Salihah, et al.
Publicado: (2012) -
Analysis of Cytology Pap Smear Images Based on Ensemble Deep Learning Approach
por: Alsalatie, Mohammed, et al.
Publicado: (2022) -
Pap Smear Images Classification Using Machine Learning: A Literature Matrix
por: Alias, Nur Ain, et al.
Publicado: (2022) -
Crowdsourcing Malaria Parasite Quantification: An Online Game for Analyzing Images of Infected Thick Blood Smears
por: Luengo-Oroz, Miguel Angel, et al.
Publicado: (2012) -
Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2019)