Cargando…
Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy
Focused ultrasound (FUS) can be used to physiologically change or destroy tissue in a non-invasive way. A few commercial systems have clinical approval for the thermal ablation of solid tumors for the treatment of neurological diseases and palliative pain management of bone metastases. However, the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914251/ https://www.ncbi.nlm.nih.gov/pubmed/36766824 http://dx.doi.org/10.3390/cells12030481 |
_version_ | 1784885623487725568 |
---|---|
author | Zhang, Xinrui Greiser, Sebastian Roy, Upasana Lange, Franziska van Gorkum, Robbert Fournelle, Marc Speicher, Daniel Tretbar, Steffen Melzer, Andreas Landgraf, Lisa |
author_facet | Zhang, Xinrui Greiser, Sebastian Roy, Upasana Lange, Franziska van Gorkum, Robbert Fournelle, Marc Speicher, Daniel Tretbar, Steffen Melzer, Andreas Landgraf, Lisa |
author_sort | Zhang, Xinrui |
collection | PubMed |
description | Focused ultrasound (FUS) can be used to physiologically change or destroy tissue in a non-invasive way. A few commercial systems have clinical approval for the thermal ablation of solid tumors for the treatment of neurological diseases and palliative pain management of bone metastases. However, the thermal effects of FUS are known to lead to various biological effects, such as inhibition of repair of DNA damage, reduction in tumor hypoxia, and induction of apoptosis. Here, we studied radiosensitization as a combination therapy of FUS and RT in a xenograft mouse model using newly developed MRI-compatible FUS equipment. Xenograft tumor-bearing mice were produced by subcutaneous injection of the human prostate cancer cell line PC-3. Animals were treated with FUS in 7 T MRI at 4.8 W/cm(2) to reach ~45 °C and held for 30 min. The temperature was controlled via fiber optics and proton resonance frequency shift (PRF) MR thermometry in parallel. In the combination group, animals were treated with FUS followed by X-ray at a single dose of 10 Gy. The effects of FUS and RT were assessed via hematoxylin-eosin (H&E) staining. Tumor proliferation was detected by the immunohistochemistry of Ki67 and apoptosis was measured by a TUNEL assay. At 40 days follow-up, the impact of RT on cancer cells was significantly improved by FUS as demonstrated by a reduction in cell nucleoli from 189 to 237 compared to RT alone. Inhibition of tumor growth by 4.6 times was observed in vivo in the FUS + RT group (85.3%) in contrast to the tumor volume of 393% in the untreated control. Our results demonstrated the feasibility of combined MRI-guided FUS and RT for the treatment of prostate cancer in a xenograft mouse model and may provide a chance for less invasive cancer therapy through radiosensitization. |
format | Online Article Text |
id | pubmed-9914251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99142512023-02-11 Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy Zhang, Xinrui Greiser, Sebastian Roy, Upasana Lange, Franziska van Gorkum, Robbert Fournelle, Marc Speicher, Daniel Tretbar, Steffen Melzer, Andreas Landgraf, Lisa Cells Article Focused ultrasound (FUS) can be used to physiologically change or destroy tissue in a non-invasive way. A few commercial systems have clinical approval for the thermal ablation of solid tumors for the treatment of neurological diseases and palliative pain management of bone metastases. However, the thermal effects of FUS are known to lead to various biological effects, such as inhibition of repair of DNA damage, reduction in tumor hypoxia, and induction of apoptosis. Here, we studied radiosensitization as a combination therapy of FUS and RT in a xenograft mouse model using newly developed MRI-compatible FUS equipment. Xenograft tumor-bearing mice were produced by subcutaneous injection of the human prostate cancer cell line PC-3. Animals were treated with FUS in 7 T MRI at 4.8 W/cm(2) to reach ~45 °C and held for 30 min. The temperature was controlled via fiber optics and proton resonance frequency shift (PRF) MR thermometry in parallel. In the combination group, animals were treated with FUS followed by X-ray at a single dose of 10 Gy. The effects of FUS and RT were assessed via hematoxylin-eosin (H&E) staining. Tumor proliferation was detected by the immunohistochemistry of Ki67 and apoptosis was measured by a TUNEL assay. At 40 days follow-up, the impact of RT on cancer cells was significantly improved by FUS as demonstrated by a reduction in cell nucleoli from 189 to 237 compared to RT alone. Inhibition of tumor growth by 4.6 times was observed in vivo in the FUS + RT group (85.3%) in contrast to the tumor volume of 393% in the untreated control. Our results demonstrated the feasibility of combined MRI-guided FUS and RT for the treatment of prostate cancer in a xenograft mouse model and may provide a chance for less invasive cancer therapy through radiosensitization. MDPI 2023-02-02 /pmc/articles/PMC9914251/ /pubmed/36766824 http://dx.doi.org/10.3390/cells12030481 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Xinrui Greiser, Sebastian Roy, Upasana Lange, Franziska van Gorkum, Robbert Fournelle, Marc Speicher, Daniel Tretbar, Steffen Melzer, Andreas Landgraf, Lisa Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy |
title | Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy |
title_full | Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy |
title_fullStr | Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy |
title_full_unstemmed | Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy |
title_short | Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy |
title_sort | evaluation of a developed mri-guided focused ultrasound system in 7 t small animal mri and proof-of-concept in a prostate cancer xenograft model to improve radiation therapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914251/ https://www.ncbi.nlm.nih.gov/pubmed/36766824 http://dx.doi.org/10.3390/cells12030481 |
work_keys_str_mv | AT zhangxinrui evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT greisersebastian evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT royupasana evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT langefranziska evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT vangorkumrobbert evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT fournellemarc evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT speicherdaniel evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT tretbarsteffen evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT melzerandreas evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy AT landgraflisa evaluationofadevelopedmriguidedfocusedultrasoundsystemin7tsmallanimalmriandproofofconceptinaprostatecancerxenograftmodeltoimproveradiationtherapy |