Cargando…
Application of Deep Learning Model in the Sonographic Diagnosis of Uterine Adenomyosis
Background: This study aims to evaluate the diagnostic performance of Deep Learning (DL) machine for the detection of adenomyosis on uterine ultrasonographic images and compare it to intermediate ultrasound skilled trainees. Methods: Prospective observational study were conducted between 1 and 30 Ap...
Autores principales: | Raimondo, Diego, Raffone, Antonio, Aru, Anna Chiara, Giorgi, Matteo, Giaquinto, Ilaria, Spagnolo, Emanuela, Travaglino, Antonio, Galatolo, Federico Andrea, Cimino, Mario Giovanni Cosimo Antonio, Lenzi, Jacopo, Centini, Gabriele, Lazzeri, Lucia, Mollo, Antonio, Seracchioli, Renato, Casadio, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914280/ https://www.ncbi.nlm.nih.gov/pubmed/36767092 http://dx.doi.org/10.3390/ijerph20031724 |
Ejemplares similares
-
Sonographic Assessment of Uterine Biometry for the Diagnosis of Diffuse Adenomyosis in a Tertiary Outpatient Clinic
por: Raimondo, Diego, et al.
Publicado: (2022) -
Impact of adenomyosis on the prognosis of patients with endometrial cancer
por: Raimondo, Diego, et al.
Publicado: (2021) -
Clinical Characteristics of Patients with Endometrial Cancer and Adenomyosis
por: Casadio, Paolo, et al.
Publicado: (2021) -
Molecular Signature of Endometrial Cancer with Coexistent Adenomyosis: A Multicentric Exploratory Analysis
por: Raimondo, Diego, et al.
Publicado: (2023) -
Endometrial Cancer Arising in Adenomyosis (EC-AIA): A Systematic Review
por: Raffone, Antonio, et al.
Publicado: (2023)