Cargando…
Validation of a Deep Learning Model for Detecting Chest Pathologies from Digital Chest Radiographs
Purpose: Manual interpretation of chest radiographs is a challenging task and is prone to errors. An automated system capable of categorizing chest radiographs based on the pathologies identified could aid in the timely and efficient diagnosis of chest pathologies. Method: For this retrospective stu...
Autores principales: | Ajmera, Pranav, Onkar, Prashant, Desai, Sanjay, Pant, Richa, Seth, Jitesh, Gupte, Tanveer, Kulkarni, Viraj, Kharat, Amit, Passi, Nandini, Khaladkar, Sanjay, Kulkarni, V. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914339/ https://www.ncbi.nlm.nih.gov/pubmed/36766661 http://dx.doi.org/10.3390/diagnostics13030557 |
Ejemplares similares
-
Observer performance evaluation of the feasibility of a deep learning
model to detect cardiomegaly on chest radiographs
por: Ajmera, Pranav, et al.
Publicado: (2022) -
A deep learning approach for automated diagnosis of pulmonary embolism on computed tomographic pulmonary angiography
por: Ajmera, Pranav, et al.
Publicado: (2022) -
Evaluating the Association Between Comorbidities and COVID-19 Severity Scoring on Chest CT Examinations Between the Two Waves of COVID-19: An Imaging Study Using Artificial Intelligence
por: Ajmera, Pranav, et al.
Publicado: (2022) -
Levels of Autonomous Radiology
por: Ghuwalewala, Suraj, et al.
Publicado: (2022) -
Imaging the Chest: The Chest Radiograph
por: Broder, Joshua
Publicado: (2011)