Cargando…
Volatile Compounds in Green and Roasted Arabica Specialty Coffee: Discrimination of Origins, Post-Harvesting Processes, and Roasting Level
The aroma of coffee is a complex mixture of more than 1000 compounds. The volatile compounds in green and roasted coffee were analyzed to detect several features related to quality, roasting level, origins, and the presence of specific defects. With respect to specialty coffee, the flavor profile an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914344/ https://www.ncbi.nlm.nih.gov/pubmed/36766018 http://dx.doi.org/10.3390/foods12030489 |
Sumario: | The aroma of coffee is a complex mixture of more than 1000 compounds. The volatile compounds in green and roasted coffee were analyzed to detect several features related to quality, roasting level, origins, and the presence of specific defects. With respect to specialty coffee, the flavor profile and peculiarities of the aforementioned characteristics are even more relevant knowing the expectations of consumers to find, in a cup of coffee, unicity bestowed by its origin and post-harvesting processes. In this work, which dealt with 46 lots of specialty Arabica coffee, we used HS-SPME/GC–MS to detect the volatile compounds in green coffees together with those in the same coffees roasted at three different levels to identify whether differences in headspace composition were ascribable to the origin, the post-harvesting processes, and the roasting profiles. The main results are related to the discriminant power of the volatile compounds in green coffee, which are impacted by the origins more than the post-harvesting processes. Compounds such as linalool and 2,3-butanediol were more concentrated in natural coffees, while hexanal was more concentrated in washed varieties (p < 0.05). In roasted coffees, the differences in composition were due to roasting levels, countries of origin, and the post-harvesting processes, in descending order of significance. |
---|