Cargando…
Uncertain-CAM: Uncertainty-Based Ensemble Machine Voting for Improved COVID-19 CXR Classification and Explainability
The ongoing coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on patients and healthcare systems across the world. Distinguishing non-COVID-19 patients from COVID-19 patients at the lowest possible cost and in the earliest stages of the disease is a major issue. Additionally,...
Autores principales: | Aldhahi, Waleed, Sull, Sanghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914375/ https://www.ncbi.nlm.nih.gov/pubmed/36766546 http://dx.doi.org/10.3390/diagnostics13030441 |
Ejemplares similares
-
Ensemble-based bag of features for automated classification of normal and COVID-19 CXR images
por: Ashour, Amira S., et al.
Publicado: (2021) -
Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification
por: Chatterjee, Subhajit, et al.
Publicado: (2022) -
An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI
por: Kibria, Hafsa Binte, et al.
Publicado: (2022) -
A voting-based ensemble feature network for semiconductor wafer defect classification
por: Misra, Sampa, et al.
Publicado: (2022) -
Adapted Deep Ensemble Learning-Based Voting Classifier for Osteosarcoma Cancer Classification
por: Walid, Md. Abul Ala, et al.
Publicado: (2023)