Cargando…
Predicting Cardiovascular Rehabilitation of Patients with Coronary Artery Disease Using Transfer Feature Learning
Cardiovascular diseases represent the leading cause of death worldwide. Thus, cardiovascular rehabilitation programs are crucial to mitigate the deaths caused by this condition each year, mainly in patients with coronary artery disease. COVID-19 was not only a challenge in this area but also an oppo...
Autores principales: | Torres, Romina, Zurita, Christopher, Mellado, Diego, Nicolis, Orietta, Saavedra, Carolina, Tuesta, Marcelo, Salinas, Matías, Bertini, Ayleen, Pedemonte, Oneglio, Querales, Marvin, Salas, Rodrigo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914400/ https://www.ncbi.nlm.nih.gov/pubmed/36766613 http://dx.doi.org/10.3390/diagnostics13030508 |
Ejemplares similares
-
Average and Interindividual Effects to a Comprehensive Cardiovascular Rehabilitation Program
por: Tuesta, Marcelo, et al.
Publicado: (2022) -
An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification
por: Cheuque, César, et al.
Publicado: (2022) -
Impact of Remote Monitoring Technologies for Assisting Patients With Gestational Diabetes Mellitus: A Systematic Review
por: Bertini, Ayleen, et al.
Publicado: (2022) -
Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review
por: Bertini, Ayleen, et al.
Publicado: (2022) -
Masonry structures between mechanics and architecture
por: Aita, Danila, et al.
Publicado: (2015)