Cargando…
Effect of Different Drying Methods on the Quality and Nonvolatile Flavor Components of Oudemansiella raphanipes
Different drying methods affect the quality of foods. The aim of this study is to explore the effects of seven drying methods, including hot air drying at 60 °C and 80 °C, ultrasound-assisted hot air drying at 60 °C and 80 °C, microwave drying, vacuum microwave drying, and vacuum freeze-drying, on t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914412/ https://www.ncbi.nlm.nih.gov/pubmed/36766204 http://dx.doi.org/10.3390/foods12030676 |
Sumario: | Different drying methods affect the quality of foods. The aim of this study is to explore the effects of seven drying methods, including hot air drying at 60 °C and 80 °C, ultrasound-assisted hot air drying at 60 °C and 80 °C, microwave drying, vacuum microwave drying, and vacuum freeze-drying, on the quality and nonvolatile flavor components of Oudemansiella raphanipes. The vacuum freeze-drying resulted in minimal collapse, mild shrinkage at the macroscopic level, and the formation of uniform pores at the microscopic level on the surfaces of O. raphanipes mushrooms. In addition, vacuum freeze-drying can improve the color attributes of the mushrooms. Therefore, the appearance and shape of vacuum freeze-drying treated O. raphanipes were closest to those of fresh mushrooms. We found that ultrasound-assisted treatment can effectively shorten the drying time of O. raphanipes. The drying time of ultrasound-assisted hot air drying at 60 °C was 20% shorter than that of hot air drying at 60 °C, and the drying time of ultrasound-assisted hot air drying at 80 °C was 37.5% shorter than that of hot air drying at 80 °C. The analysis of the nonvolatile flavor components showed that the ultrasound-assisted hot air drying at 60 °C of the O. raphanipes sample had the highest content of free amino acids (83.78 mg/g) and an equivalent umami concentration value (1491.33 monosodium glutamate/100 g). The vacuum freeze-drying treated O. raphanipes had the highest 5′-nucleotide content of 2.44 mg/g. Therefore, vacuum freeze-drying and ultrasound-assisted hot air drying at 60 °C, followed by vacuum microwave drying, might protect the flavor components of O. raphanipes to the greatest extent. However, microwave drying, hot air drying at 80 °C, and ultrasound-assisted hot air drying at 80 °C could destroy the flavor components of O. raphanipes during drying. The results of this study provided data support for the industrial production of dried O. raphanipes. |
---|