Cargando…
Machine Learning Algorithms Applied to Semi-Quantitative Data of the Volatilome of Citrus and Other Nectar Honeys with the Use of HS-SPME/GC–MS Analysis, Lead to a New Index of Geographical Origin Authentication
The scope of the current study was to monitor if semi-quantitative data of volatile compounds (volatilome) of citrus honey (ch) produced in different countries could potentially lead to a new index of citrus honey authentication using specific ratios of the identified volatile compounds in combinati...
Autores principales: | Karabagias, Ioannis Konstantinos, Nayik, Gulzar Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914582/ https://www.ncbi.nlm.nih.gov/pubmed/36766038 http://dx.doi.org/10.3390/foods12030509 |
Ejemplares similares
-
Comparative Volatilomic Profile of Three Finger Lime (Citrus australasica) Cultivars Based on Chemometrics Analysis of HS-SPME/GC–MS Data
por: Cozzolino, Rosaria, et al.
Publicado: (2022) -
Investigating Bacterial Volatilome for the Classification and Identification of Mycobacterial Species by HS-SPME-GC-MS and Machine Learning
por: Beccaria, Marco, et al.
Publicado: (2021) -
The Use of SPME-GC-MS IR and Raman Techniques for Botanical and Geographical Authentication and Detection of Adulteration of Honey
por: Sotiropoulou, Nefeli Sofia, et al.
Publicado: (2021) -
Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS
por: Qi, Heting, et al.
Publicado: (2020) -
HS-SPME-GC/MS Analysis for Revealing Carob’s Ripening
por: Fella, Panagiota, et al.
Publicado: (2022)