Cargando…

Medical Images Segmentation for Lung Cancer Diagnosis Based on Deep Learning Architectures

Lung cancer presents one of the leading causes of mortalities for people around the world. Lung image analysis and segmentation are one of the primary steps used for early diagnosis of cancer. Handcrafted medical imaging segmentation presents a very time-consuming task for radiation oncologists. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Said, Yahia, Alsheikhy, Ahmed A., Shawly, Tawfeeq, Lahza, Husam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914913/
https://www.ncbi.nlm.nih.gov/pubmed/36766655
http://dx.doi.org/10.3390/diagnostics13030546
Descripción
Sumario:Lung cancer presents one of the leading causes of mortalities for people around the world. Lung image analysis and segmentation are one of the primary steps used for early diagnosis of cancer. Handcrafted medical imaging segmentation presents a very time-consuming task for radiation oncologists. To address this problem, we propose in this work to develop a full and entire system used for early diagnosis of lung cancer in CT scan imaging. The proposed lung cancer diagnosis system is composed of two main parts: the first part is used for segmentation developed on top of the UNETR network, and the second part is a classification part used to classify the output segmentation part, either benign or malignant, developed on top of the self-supervised network. The proposed system presents a powerful tool for early diagnosing and combatting lung cancer using 3D-input CT scan data. Extensive experiments have been performed to contribute to better segmentation and classification results. Training and testing experiments have been performed using the Decathlon dataset. Experimental results have been conducted to new state-of-the-art performances: segmentation accuracy of 97.83%, and 98.77% as classification accuracy. The proposed system presents a new powerful tool to use for early diagnosing and combatting lung cancer using 3D-input CT scan data.