Cargando…
A Novel Explainable Fuzzy Clustering Approach for fMRI Dynamic Functional Network Connectivity Analysis
Resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) analysis has illuminated brain network interactions across many neuropsychiatric disorders. A common analysis approach involves using hard clustering methods to identify transitory states of...
Autores principales: | Ellis, Charles A., Miller, Robyn L., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915490/ https://www.ncbi.nlm.nih.gov/pubmed/36778353 http://dx.doi.org/10.1101/2023.01.29.526110 |
Ejemplares similares
-
Explainable Fuzzy Clustering Framework Reveals Divergent Default Mode Network Connectivity Dynamics in Schizophrenia
por: Ellis, Charles A., et al.
Publicado: (2023) -
Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity
por: Yaesoubi, Maziar, et al.
Publicado: (2017) -
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019) -
Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
por: Chen, Zikuan, et al.
Publicado: (2018) -
Approaches to Capture Variance Differences in Rest fMRI Networks in the Spatial Geometric Features: Application to Schizophrenia
por: Gopal, Shruti, et al.
Publicado: (2016)