Cargando…
Kv12-Encoded K(+) Channels Drive the Day-Night Switch in the Repetitive Firing Rates of SCN Neurons
Considerable evidence suggests that day-night rhythms in the functional expression of subthreshold potassium (K(+)) channels regulate daily oscillations in the rates of spontaneous action potential firing of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915524/ https://www.ncbi.nlm.nih.gov/pubmed/36778242 http://dx.doi.org/10.1101/2023.01.30.526323 |
Sumario: | Considerable evidence suggests that day-night rhythms in the functional expression of subthreshold potassium (K(+)) channels regulate daily oscillations in the rates of spontaneous action potential firing of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K(+) conductance(s) driving these daily rhythms in repetitive firing rates, however, have not been identified. To test the hypothesis that subthreshold Kv12.1/Kv12.2-encoded K(+) channels play a role, we obtained current-clamp recordings from SCN neurons in slices prepared from adult mice harboring targeted disruptions in the Kcnh8 (Kv12.1(−/−)) or Kcnh3 (Kv12.2(−/−)) locus. We found that mean nighttime repetitive firing rates were higher in Kv12.1(−/−) and Kv12.2(−/−), than in wild type (WT), SCN neurons. In marked contrast, mean daytime repetitive firing rates were similar in Kv12.1(−/−), Kv12.2(−/−) and WT SCN neurons, and the day-night difference in mean repetitive firing rates, a hallmark feature of WT SCN neurons, was eliminated in Kv12.1(−/−) and Kv12.2(−/−) SCN neurons. Similar results were obtained with in vivo shRNA-mediated acute knockdown of Kv12.1 or Kv12.2 in adult SCN neurons. Voltage-clamp experiments revealed that Kv12-encoded current densities in WT SCN neurons are higher at night than during the day. In addition, pharmacological block of Kv12-encoded currents increased the mean repetitive firing rate of nighttime, but not daytime, in WT SCN neurons. Dynamic clamp-mediated subtraction of modeled Kv12-encoded currents also selectively increased the mean repetitive firing rates of nighttime WT SCN neurons. Despite the elimination of nighttime decrease in the mean repetitive firing rates of SCN neurons, however, locomotor (wheel-running) activity remained rhythmic in Kv12.1(−/−), Kv12.2(−/−), Kv12.1-targeted shRNA-expressing, and Kv12.2-targeted shRNA-expressing animals. |
---|