Cargando…

Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae

Precursor mRNA (pre-mRNA) splicing is an essential process for gene expression in eukaryotes catalyzed by the spliceosome in two transesterification steps. The spliceosome is a large, highly dynamic complex composed of 5 small nuclear RNAs and dozens of proteins, some of which are needed throughout...

Descripción completa

Detalles Bibliográficos
Autores principales: Lipinski, Karli A., Senn, Katherine A., Zeps, Natalie J., Hoskins, Aaron A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915624/
https://www.ncbi.nlm.nih.gov/pubmed/36778415
http://dx.doi.org/10.1101/2023.01.30.526368
_version_ 1784885938907774976
author Lipinski, Karli A.
Senn, Katherine A.
Zeps, Natalie J.
Hoskins, Aaron A.
author_facet Lipinski, Karli A.
Senn, Katherine A.
Zeps, Natalie J.
Hoskins, Aaron A.
author_sort Lipinski, Karli A.
collection PubMed
description Precursor mRNA (pre-mRNA) splicing is an essential process for gene expression in eukaryotes catalyzed by the spliceosome in two transesterification steps. The spliceosome is a large, highly dynamic complex composed of 5 small nuclear RNAs and dozens of proteins, some of which are needed throughout the splicing reaction while others only act during specific stages. The human protein FAM192A was recently proposed to be a splicing factor that functions during the second transesterification step, exon ligation, based on analysis of cryo-electron microscopy (cryo-EM) density. It was also proposed that Fyv6 might be the functional S. cerevisiae homolog of FAM192A; however, no biochemical or genetic data has been reported to support this hypothesis. Herein, we show that Fyv6 is a splicing factor and acts during exon ligation. Deletion of FYV6 results in genetic interactions with the essential splicing factors Prp8, Prp16, and Prp22; decreases splicing in vivo of reporter genes harboring intron substitutions that limit the rate of exon ligation; and changes 3’ splice site (SS) selection. Together, these data suggest that Fyv6 is a component of the spliceosome and the potential functional and structural homolog of human FAM192A.
format Online
Article
Text
id pubmed-9915624
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-99156242023-02-11 Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae Lipinski, Karli A. Senn, Katherine A. Zeps, Natalie J. Hoskins, Aaron A. bioRxiv Article Precursor mRNA (pre-mRNA) splicing is an essential process for gene expression in eukaryotes catalyzed by the spliceosome in two transesterification steps. The spliceosome is a large, highly dynamic complex composed of 5 small nuclear RNAs and dozens of proteins, some of which are needed throughout the splicing reaction while others only act during specific stages. The human protein FAM192A was recently proposed to be a splicing factor that functions during the second transesterification step, exon ligation, based on analysis of cryo-electron microscopy (cryo-EM) density. It was also proposed that Fyv6 might be the functional S. cerevisiae homolog of FAM192A; however, no biochemical or genetic data has been reported to support this hypothesis. Herein, we show that Fyv6 is a splicing factor and acts during exon ligation. Deletion of FYV6 results in genetic interactions with the essential splicing factors Prp8, Prp16, and Prp22; decreases splicing in vivo of reporter genes harboring intron substitutions that limit the rate of exon ligation; and changes 3’ splice site (SS) selection. Together, these data suggest that Fyv6 is a component of the spliceosome and the potential functional and structural homolog of human FAM192A. Cold Spring Harbor Laboratory 2023-01-31 /pmc/articles/PMC9915624/ /pubmed/36778415 http://dx.doi.org/10.1101/2023.01.30.526368 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Lipinski, Karli A.
Senn, Katherine A.
Zeps, Natalie J.
Hoskins, Aaron A.
Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae
title Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae
title_full Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae
title_fullStr Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae
title_full_unstemmed Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae
title_short Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae
title_sort biochemical and genetic evidence supports fyv6 as a second-step splicing factor in saccharomyces cerevisiae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915624/
https://www.ncbi.nlm.nih.gov/pubmed/36778415
http://dx.doi.org/10.1101/2023.01.30.526368
work_keys_str_mv AT lipinskikarlia biochemicalandgeneticevidencesupportsfyv6asasecondstepsplicingfactorinsaccharomycescerevisiae
AT sennkatherinea biochemicalandgeneticevidencesupportsfyv6asasecondstepsplicingfactorinsaccharomycescerevisiae
AT zepsnataliej biochemicalandgeneticevidencesupportsfyv6asasecondstepsplicingfactorinsaccharomycescerevisiae
AT hoskinsaarona biochemicalandgeneticevidencesupportsfyv6asasecondstepsplicingfactorinsaccharomycescerevisiae