Cargando…
Broiler house environment and litter management practices impose selective pressures on antimicrobial resistance genes and virulence factors of Campylobacter
Campylobacter infections are a leading cause of bacterial diarrhea in humans globally. Infections are due to consumption of contaminated food products and are highly associated with chicken meat, with chickens being an important reservoir for Campylobacter. Here, we characterized the genetic diversi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915665/ https://www.ncbi.nlm.nih.gov/pubmed/36778422 http://dx.doi.org/10.1101/2023.02.02.526821 |
Sumario: | Campylobacter infections are a leading cause of bacterial diarrhea in humans globally. Infections are due to consumption of contaminated food products and are highly associated with chicken meat, with chickens being an important reservoir for Campylobacter. Here, we characterized the genetic diversity of Campylobacter species detected in broiler chicken litter over three consecutive flocks and determined their antimicrobial resistance and virulence factor profiles. Antimicrobial susceptibility testing and whole genome sequencing were performed on Campylobacter jejuni (n = 39) and Campylobacter coli (n = 5) isolates. All C. jejuni isolates were susceptible to all antibiotics tested while C. coli (n =4) were resistant to only tetracycline and harbored the tetracycline-resistant ribosomal protection protein (TetO). Virulence factors differed within and across grow houses but were explained by the isolates’ flock cohort, species and multilocus sequence type. Virulence factors involved in the ability to invade and colonize host tissues and evade host defenses were absent from flock cohort 3 C. jejuni isolates as compared to flock 1 and 2 isolates. Our results show that virulence factors and antimicrobial resistance genes differed by the isolates’ multilocus sequence type and by the flock cohort they were present in. These data suggest that the house environment and litter management practices performed imposed selective pressures on antimicrobial resistance genes and virulence factors. In particular, the absence of key virulence factors within the final flock cohort 3 isolates suggests litter reuse selected for Campylobacter strains that are less likely to colonize the chicken host. |
---|