Cargando…
Dual orexin/hypocretin receptor antagonism attenuates attentional impairments in an NMDA receptor hypofunction model of schizophrenia
Schizophrenia is a neuropsychiatric condition that is associated with impaired attentional processing and performance. Failure to support increasing attentional load may result, in part, from abnormally overactive basal forebrain projections to the prefrontal cortex, and available antipsychotics oft...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915718/ https://www.ncbi.nlm.nih.gov/pubmed/36778441 http://dx.doi.org/10.1101/2023.02.05.527043 |
Sumario: | Schizophrenia is a neuropsychiatric condition that is associated with impaired attentional processing and performance. Failure to support increasing attentional load may result, in part, from abnormally overactive basal forebrain projections to the prefrontal cortex, and available antipsychotics often fail to address this issue. Orexin/hypocretin receptors are expressed on corticopetal cholinergic neurons, and their blockade has been shown to decrease the activity of cortical basal forebrain outputs and prefrontal cortical cholinergic neurotransmission. In the present experiment, rats (N = 14) trained in a visual sustained attention task that required discrimination of trials which presented a visual signal from trials during which no signal was presented. Once trained, rats were then co-administered the psychotomimetic N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK-801: 0 or 0.1 mg/kg, intraperitoneal injections) and the dual orexin receptor antagonist filorexant (MK-6096: 0, 0.1, or 1 mM, intracerebroventricular infusions) prior to task performance across six sessions. Dizocilpine impaired overall accuracy during signal trials, slowed reaction times for correctly-responded trials, and increased the number of omitted trials throughout the task. Dizocilpine-induced increases in signal trial deficits, correct response latencies, and errors of omission were reduced following infusions of the 0.1 mM, but not 1 mM, dose of filorexant. Orexin receptor blockade, perhaps through anticholinergic mechanisms, may improve attentional deficits in a state of NMDA receptor hypofunction. |
---|