Cargando…
PASSerRank: Prediction of Allosteric Sites with Learning to Rank
Allostery plays a crucial role in regulating protein activity, making it a highly sought-after target in drug development. One of the major challenges in allosteric drug research is the identification of allosteric sites. In recent years, many computational models have been developed for accurate al...
Autores principales: | Tian, Hao, Xiao, Sian, Jiang, Xi, Tao, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915737/ https://www.ncbi.nlm.nih.gov/pubmed/36776818 |
Ejemplares similares
-
PASSer: fast and accurate prediction of protein allosteric sites
por: Tian, Hao, et al.
Publicado: (2023) -
PASSer2.0: Accurate Prediction of Protein Allosteric Sites Through Automated Machine Learning
por: Xiao, Sian, et al.
Publicado: (2022) -
NeuRank: learning to rank with neural networks for drug–target interaction prediction
por: Wu, Xiujin, et al.
Publicado: (2021) -
Counterfactual Online Learning to Rank
por: Zhuang, Shengyao, et al.
Publicado: (2020) -
Software defect prediction using learning to rank approach
por: Nassif, Ali Bou, et al.
Publicado: (2023)