Cargando…

Machine Learning for the ECG Diagnosis and Risk Stratification of Occlusion Myocardial Infarction at First Medical Contact

Patients with occlusion myocardial infarction (OMI) and no ST-elevation on presenting ECG are increasing in numbers. These patients have a poor prognosis and would benefit from immediate reperfusion therapy, but we currently have no accurate tools to identify them during initial triage. Herein, we r...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Zaiti, Salah, Martin-Gill, Christian, Zégre-Hemsey, Jessica, Bouzid, Zeineb, Faramand, Ziad, Alrawashdeh, Mohammad, Gregg, Richard, Helman, Stephanie, Riek, Nathan, Kraevsky-Phillips, Karina, Clermont, Gilles, Akcakaya, Murat, Sereika, Susan, Van Dam, Peter, Smith, Stephen, Birnbaum, Yochai, Saba, Samir, Sejdic, Ervin, Callaway, Clifton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915770/
https://www.ncbi.nlm.nih.gov/pubmed/36778371
http://dx.doi.org/10.21203/rs.3.rs-2510930/v1
Descripción
Sumario:Patients with occlusion myocardial infarction (OMI) and no ST-elevation on presenting ECG are increasing in numbers. These patients have a poor prognosis and would benefit from immediate reperfusion therapy, but we currently have no accurate tools to identify them during initial triage. Herein, we report the first observational cohort study to develop machine learning models for the ECG diagnosis of OMI. Using 7,313 consecutive patients from multiple clinical sites, we derived and externally validated an intelligent model that outperformed practicing clinicians and other widely used commercial interpretation systems, significantly boosting both precision and sensitivity. Our derived OMI risk score provided superior rule-in and rule-out accuracy compared to routine care, and when combined with the clinical judgment of trained emergency personnel, this score helped correctly reclassify one in three patients with chest pain. ECG features driving our models were validated by clinical experts, providing plausible mechanistic links to myocardial injury.