Cargando…
Application of a Machine Learning Method for Prediction of Urban Neighborhood-Scale Air Pollution
Urban air pollution has aroused growing attention due to its associated adverse health effects. A model which could promptly predict urban air quality with considerable accuracy is, therefore, important and will benefit the development of smart cities. However, only a computational fluid dynamics (C...
Autores principales: | Wai, Ka-Ming, Yu, Peter K. N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915966/ https://www.ncbi.nlm.nih.gov/pubmed/36767778 http://dx.doi.org/10.3390/ijerph20032412 |
Ejemplares similares
-
Application of Machine Learning Methods to Predict the Air Half-Lives of Persistent Organic Pollutants
por: Zhang, Ying, et al.
Publicado: (2023) -
Assessment of the Negative Impact of Urban Air Pollution on Population Health Using Machine Learning Method
por: Temirbekov, Nurlan, et al.
Publicado: (2023) -
Healthy Neighborhoods: Walkability and Air Pollution
por: Marshall, Julian D., et al.
Publicado: (2009) -
Micro-scale modelling of the urban wind speed for air pollution applications
por: Ottosen, Thor-Bjørn, et al.
Publicado: (2019) -
Evaluating Multipollutant Exposure and Urban Air Quality: Pollutant Interrelationships, Neighborhood Variability, and Nitrogen Dioxide as a Proxy Pollutant
por: Levy, Ilan, et al.
Publicado: (2013)