Cargando…

Heart Rate and Body Temperature Evolution in an Interval Program of Passive Heat Acclimation at High Temperatures (100 ± 2 °C) in a Sauna

Heat exposure provokes stress on the human body. If it remains constant, it leads to adaptations such as heat acclimation. This study aims to observe the evolution of heart rate (HR), core temperature (Tcore), and skin temperature (Tskin) in an intervallic program of exposure to extreme heat. Twenty...

Descripción completa

Detalles Bibliográficos
Autores principales: Siquier-Coll, Jesús, Bartolomé, Ignacio, Pérez-Quintero, Mario, Toro-Román, Víctor, Grijota, Francisco J., Maynar-Mariño, Marcos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916041/
https://www.ncbi.nlm.nih.gov/pubmed/36767447
http://dx.doi.org/10.3390/ijerph20032082
Descripción
Sumario:Heat exposure provokes stress on the human body. If it remains constant, it leads to adaptations such as heat acclimation. This study aims to observe the evolution of heart rate (HR), core temperature (Tcore), and skin temperature (Tskin) in an intervallic program of exposure to extreme heat. Twenty-nine healthy male volunteers were divided into a control group (CG; n = 14) and an experimental group (EG; n = 15). EG experienced nine sessions (S) of intervallic exposure to high temperatures (100 ± 2 °C), whereas CG was exposed to ambient temperatures (22 ± 2 °C). HR, Tskin, and Tcore were monitored in S1, 4, 5, 8, and 9. An important increase in HR occurred in the S4 compared to the rest (p < 0.05) in EG. A lower HR was discovered in S8 and S9 compared to S4 and in S9 in relation to S1 (p < 0.05) in EG. EG experiences a gradual decrease in Tcore and Tskin, which was detected throughout the assessments, although it was only significant in the S8 and S9 (p < 0.05). Interval exposure to heat at 100 ± 2 °C elicits stress on the human organism, fundamentally increasing Tcore, Tskin, and FC. This recurring stress in the full program caused a drop in the thermoregulatory response as an adaptation or acclimation to heat.