Cargando…
Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets
Meat has been found to be a prime vehicle for the dissemination of foodborne pathogens to humans worldwide. Microbial meat contaminants can cause food-borne diseases in humans. The threat to consumers by microbial meat contaminants necessitates the studying of meat microbial loads to prevent potenti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916197/ https://www.ncbi.nlm.nih.gov/pubmed/36767353 http://dx.doi.org/10.3390/ijerph20031986 |
_version_ | 1784886068157349888 |
---|---|
author | Rani, Zikhona Theodora Mhlongo, Lindokuhle Christopher Hugo, Arno |
author_facet | Rani, Zikhona Theodora Mhlongo, Lindokuhle Christopher Hugo, Arno |
author_sort | Rani, Zikhona Theodora |
collection | PubMed |
description | Meat has been found to be a prime vehicle for the dissemination of foodborne pathogens to humans worldwide. Microbial meat contaminants can cause food-borne diseases in humans. The threat to consumers by microbial meat contaminants necessitates the studying of meat microbial loads to prevent potential illnesses in consumers. Studies investigating the meat microbial loads in South Africa are limited. The objective of this study was to compare microbial contamination of different meat types from low-throughput (LTA) and high-throughput abattoirs (HTA) at three stages of the distribution chain from abattoir to retail outlets. Beef, pork, and mutton (n = 216) carcasses were sampled: during the loading process at the abattoirs, when off-loading at the supply points and during marketing. All samples were subjected to total bacterial count (TBC), coliform count (CC), presumptive Escherichia coli (E. coli) (PEC) and Staphylococcus aureus (S. aureus) detection. In mutton, TBC dominated at loading, CC was similar across distribution chain stages, PEC was the predominant microbial contaminant at the offloading stage at the HTA, but TBC was affected at loading, CC was similar across distribution chain stages, PEC was affected at loading, and S. aureus was affected at the display stage at the LTAs. In beef, TBC had similar levels at loading; CC and PEC dominated at the display stage for the HTAs. However, TBC was affected at the display stage; CC was similar across stages; PEC was affected at the offloading stage at the LTAs. In pork, higher contamination levels were discovered at the display stage, CC dominated at the loading stage, with PEC detected at offloading at the HTAs but TBC, CC, PEC and S. aureus were similar across stages at the LTAs. TBC, CC and PEC were affected by the storage period and meat supplier to meat shop distance whereas distance affected the TBC, CC and PEC. Meat supplier to meat shop distance negatively correlated with meat distribution chain stage but positively correlated with TBC, CC and PEC such as temperature. Temperature positively correlated with meat distribution chain stage and shop class. Meat distribution chain stage was negatively correlated with storage period, TBC, CC and PEC but positively correlated with shop class. Shop class negatively correlated with storage period, TBC, CC and PEC. Storage period positively correlated with TB, CC and PEC. TBC and meat type positively correlated with CC and PEC. CC positively correlated with PEC but negatively correlated with S. aureus such as PEC. In conclusion, mutton, pork and beef meat are susceptible to microbial contamination at distribution chain stages in abattoirs. |
format | Online Article Text |
id | pubmed-9916197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99161972023-02-11 Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets Rani, Zikhona Theodora Mhlongo, Lindokuhle Christopher Hugo, Arno Int J Environ Res Public Health Article Meat has been found to be a prime vehicle for the dissemination of foodborne pathogens to humans worldwide. Microbial meat contaminants can cause food-borne diseases in humans. The threat to consumers by microbial meat contaminants necessitates the studying of meat microbial loads to prevent potential illnesses in consumers. Studies investigating the meat microbial loads in South Africa are limited. The objective of this study was to compare microbial contamination of different meat types from low-throughput (LTA) and high-throughput abattoirs (HTA) at three stages of the distribution chain from abattoir to retail outlets. Beef, pork, and mutton (n = 216) carcasses were sampled: during the loading process at the abattoirs, when off-loading at the supply points and during marketing. All samples were subjected to total bacterial count (TBC), coliform count (CC), presumptive Escherichia coli (E. coli) (PEC) and Staphylococcus aureus (S. aureus) detection. In mutton, TBC dominated at loading, CC was similar across distribution chain stages, PEC was the predominant microbial contaminant at the offloading stage at the HTA, but TBC was affected at loading, CC was similar across distribution chain stages, PEC was affected at loading, and S. aureus was affected at the display stage at the LTAs. In beef, TBC had similar levels at loading; CC and PEC dominated at the display stage for the HTAs. However, TBC was affected at the display stage; CC was similar across stages; PEC was affected at the offloading stage at the LTAs. In pork, higher contamination levels were discovered at the display stage, CC dominated at the loading stage, with PEC detected at offloading at the HTAs but TBC, CC, PEC and S. aureus were similar across stages at the LTAs. TBC, CC and PEC were affected by the storage period and meat supplier to meat shop distance whereas distance affected the TBC, CC and PEC. Meat supplier to meat shop distance negatively correlated with meat distribution chain stage but positively correlated with TBC, CC and PEC such as temperature. Temperature positively correlated with meat distribution chain stage and shop class. Meat distribution chain stage was negatively correlated with storage period, TBC, CC and PEC but positively correlated with shop class. Shop class negatively correlated with storage period, TBC, CC and PEC. Storage period positively correlated with TB, CC and PEC. TBC and meat type positively correlated with CC and PEC. CC positively correlated with PEC but negatively correlated with S. aureus such as PEC. In conclusion, mutton, pork and beef meat are susceptible to microbial contamination at distribution chain stages in abattoirs. MDPI 2023-01-21 /pmc/articles/PMC9916197/ /pubmed/36767353 http://dx.doi.org/10.3390/ijerph20031986 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rani, Zikhona Theodora Mhlongo, Lindokuhle Christopher Hugo, Arno Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets |
title | Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets |
title_full | Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets |
title_fullStr | Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets |
title_full_unstemmed | Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets |
title_short | Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets |
title_sort | microbial profiles of meat at different stages of the distribution chain from the abattoir to retail outlets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916197/ https://www.ncbi.nlm.nih.gov/pubmed/36767353 http://dx.doi.org/10.3390/ijerph20031986 |
work_keys_str_mv | AT ranizikhonatheodora microbialprofilesofmeatatdifferentstagesofthedistributionchainfromtheabattoirtoretailoutlets AT mhlongolindokuhlechristopher microbialprofilesofmeatatdifferentstagesofthedistributionchainfromtheabattoirtoretailoutlets AT hugoarno microbialprofilesofmeatatdifferentstagesofthedistributionchainfromtheabattoirtoretailoutlets |