Cargando…

Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in the paediatric population. JIA comprises a heterogeneous group of disorders with different onset patterns and clinical presentations with the only element in common being chronic joint inflammation. This review sough...

Descripción completa

Detalles Bibliográficos
Autores principales: La Bella, Saverio, Rinaldi, Marta, Di Ludovico, Armando, Di Donato, Giulia, Di Donato, Giulio, Salpietro, Vincenzo, Chiarelli, Francesco, Breda, Luciana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916312/
https://www.ncbi.nlm.nih.gov/pubmed/36768167
http://dx.doi.org/10.3390/ijms24031846
Descripción
Sumario:Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in the paediatric population. JIA comprises a heterogeneous group of disorders with different onset patterns and clinical presentations with the only element in common being chronic joint inflammation. This review sought to evaluate the most relevant and up-to-date evidence on current knowledge regarding the pathogenesis of JIA subtypes to provide a better understanding of these disorders. Despite significant improvements over the past decade, the aetiology and molecular mechanisms of JIA remain unclear. It has been suggested that the immunopathogenesis is characterised by complex interactions between genetic background and environmental factors that may differ between JIA subtypes. Human leukocyte antigen (HLA) haplotypes and non-HLA genes play a crucial role in the abnormal activation of both innate and adaptive immune cells that cooperate in causing the inflammatory process. This results in the involvement of proinflammatory cytokines, including tumour necrosis factor (TNF)α, interleukin (IL)-1, IL-6, IL-10, IL-17, IL-21, IL-23, and others. These mediators, interacting with the surrounding tissue, cause cartilage stress and bone damage, including irreversible erosions. The purpose of this review is to provide a comprehensive overview of the genetic background and molecular mechanisms of JIA.