Cargando…

Role of Melatonin in Daily Variations of Plasma Insulin Level and Pancreatic Clock Gene Expression in Chick Exposed to Monochromatic Light

To clarify the effect of monochromatic light on circadian rhythms of plasma insulin level and pancreatic clock gene expression and its mechanism, 216 newly hatched chicks were divided into three groups (intact, sham operation and pinealectomy) and were raised under white (WL), red (RL), green (GL) o...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Chao, Wang, Zixu, Cao, Jing, Dong, Yulan, Chen, Yaoxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916459/
https://www.ncbi.nlm.nih.gov/pubmed/36768693
http://dx.doi.org/10.3390/ijms24032368
Descripción
Sumario:To clarify the effect of monochromatic light on circadian rhythms of plasma insulin level and pancreatic clock gene expression and its mechanism, 216 newly hatched chicks were divided into three groups (intact, sham operation and pinealectomy) and were raised under white (WL), red (RL), green (GL) or blue (BL) light for 21 days. Their plasma and pancreas were sampled at six four-hour intervals. For circadian rhythm analysis, measurements of plasma melatonin, insulin, and clock gene expression (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2, and cPer3) were made. Plasma melatonin, insulin, and the pancreatic clock gene all expressed rhythmically in the presence of monochromatic light. Red light reduced the mesor and amplitude of plasma melatonin in comparison to green light. The mesor and amplitude of the pancreatic clock gene in chickens exposed to red light were dramatically reduced, which is consistent with the drop in plasma melatonin levels. Red light, on the other hand, clearly raised the level of plasma insulin via raising the expression of cVamp2, but not cInsulin. After the pineal gland was removed, the circadian expressions of plasma melatonin and pancreatic clock gene were significantly reduced, but the plasma insulin level and the pancreatic cVamp2 expression were obviously increased, resulting in the disappearance of differences in insulin level and cVamp2 expression in the monochromatic light groups. Therefore, we hypothesize that melatonin may be crucial in the effect of monochromatic light on the circadian rhythm of plasma insulin level by influencing the expression of clock gene in chicken pancreas.