Cargando…

Towards automated check-worthy sentence detection using Gated Recurrent Unit

People are exposed to a lot of information daily, which is a mix of facts, opinions, and false claims. The rate at which information is created and spread has necessitated an automated fact-checking mechanism. In this work, we focus on the first step of the fact-checking system, which is to identify...

Descripción completa

Detalles Bibliográficos
Autores principales: Jha, Ria, Motwani, Ena, Singhal, Nivedita, Kaushal, Rishabh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer London 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916500/
https://www.ncbi.nlm.nih.gov/pubmed/36816595
http://dx.doi.org/10.1007/s00521-023-08300-x
Descripción
Sumario:People are exposed to a lot of information daily, which is a mix of facts, opinions, and false claims. The rate at which information is created and spread has necessitated an automated fact-checking mechanism. In this work, we focus on the first step of the fact-checking system, which is to identify whether a given sentence is factual. We propose a glove embedding-based gated recurrent unit pipeline for check-worthy sentence detection, referred to as G2CW framework. It detects whether a given sentence has check-worthy content in it or not; furthermore, if it has check-worthy content, whether it is important or not, from a fact-checking perspective. We evaluate our proposed framework on two datasets: a standard ClaimBuster dataset commonly used by the research community for this problem and a self-curated IndianClaim dataset. Our G2CW framework outperforms prior work with 0.92 as F1-score. Furthermore, our G2CW framework, when trained on the ClaimBuster dataset, performs the best on the IndianClaims dataset.