Cargando…
Key Genes of Immunity Associated with Pterygium and Primary Sjögren’s Syndrome
Pterygium and primary Sjögren’s Syndrome (pSS) share many similarities in clinical symptoms and ocular pathophysiological changes, but their etiology is unclear. To identify the potential genes and pathways related to immunity, two published datasets, GSE2513 containing pterygium information and GSE...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916617/ https://www.ncbi.nlm.nih.gov/pubmed/36768371 http://dx.doi.org/10.3390/ijms24032047 |
Sumario: | Pterygium and primary Sjögren’s Syndrome (pSS) share many similarities in clinical symptoms and ocular pathophysiological changes, but their etiology is unclear. To identify the potential genes and pathways related to immunity, two published datasets, GSE2513 containing pterygium information and GSE176510 containing pSS information, were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of pterygium or pSS patients compared with healthy control conjunctiva, and the common DEGs between them were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted for common DEGs. The protein–protein interaction (PPI) network was constructed using the STRING database to find the hub genes, which were verified in clinical samples. There were 14 co-upregulated DEGs. The GO and KEGG analyses showed that these common DEGs were enriched in pathways correlated with virus infection, antigen processing and presentation, nuclear factor-kappa B (NF-κB) and Th17 cell differentiation. The hub genes (IL1R1, ICAM1, IRAK1, S100A9, and S100A8) were selected by PPI construction. In the era of the COVID-19 epidemic, the relationship between virus infection, vaccination, and the incidence of pSS and pterygium growth deserves more attention. |
---|