Cargando…
MetaSEM: Gene Regulatory Network Inference from Single-Cell RNA Data by Meta-Learning
Regulators in gene regulatory networks (GRNs) are crucial for identifying cell states. However, GRN inference based on scRNA-seq data has several problems, including high dimensionality and sparsity, and requires more label data. Therefore, we propose a meta-learning GRN inference framework to ident...
Autores principales: | Zhang, Yongqing, Wang, Maocheng, Wang, Zixuan, Liu, Yuhang, Xiong, Shuwen, Zou, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916710/ https://www.ncbi.nlm.nih.gov/pubmed/36768917 http://dx.doi.org/10.3390/ijms24032595 |
Ejemplares similares
-
metaSEM: an R package for meta-analysis using structural equation modeling
por: Cheung, Mike W.-L.
Publicado: (2015) -
Uncovering the Relationship between Tissue-Specific TF-DNA Binding and Chromatin Features through a Transformer-Based Model
por: Zhang, Yongqing, et al.
Publicado: (2022) -
A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder
por: Wang, Zixuan, et al.
Publicado: (2023) -
Multiple sequence alignment based on deep reinforcement learning with self-attention and positional encoding
por: Liu, Yuhang, et al.
Publicado: (2023) -
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
por: Wang, Jiacheng, et al.
Publicado: (2023)