Cargando…

Localization of Pyranose 2-Oxidase from Kitasatospora aureofaciens: A Step Closer to Elucidate a Biological Role

Lignin degradation in fungal systems is well characterized. Recently, a potential for lignin depolymerization and modification employing similar enzymatic activities by bacteria is increasingly recognized. The presence of genes annotated as peroxidases in Actinobacteria genomes suggests that these b...

Descripción completa

Detalles Bibliográficos
Autores principales: Virginia, Ludovika Jessica, Peterbauer, Clemens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916811/
https://www.ncbi.nlm.nih.gov/pubmed/36768294
http://dx.doi.org/10.3390/ijms24031975
Descripción
Sumario:Lignin degradation in fungal systems is well characterized. Recently, a potential for lignin depolymerization and modification employing similar enzymatic activities by bacteria is increasingly recognized. The presence of genes annotated as peroxidases in Actinobacteria genomes suggests that these bacteria should contain auxiliary enzymes such as flavin-dependent carbohydrate oxidoreductases. The only auxiliary activity subfamily with significantly similar representatives in bacteria is pyranose oxidase (POx). A biological role of providing H(2)O(2) for peroxidase activation and reduction of radical degradation products suggests an extracellular localization, which has not been established. Analysis of the genomic locus of POX from Kitasatospora aureofaciens (KaPOx), which is similar to fungal POx, revealed a start codon upstream of the originally annotated one, and the additional sequence was considered a putative Tat-signal peptide by computational analysis. We expressed KaPOx including this additional upstream sequence as well as fusion constructs consisting of the additional sequence, the KaPOx mature domain and the fluorescent protein mRFP1 in Streptomyces lividans. The putative signal peptide facilitated secretion of KaPOx and the fusion protein, suggesting a natural extracellular localization and supporting a potential role in providing H(2)O(2) and reducing radical compounds derived from lignin degradation.