Cargando…
Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer
Although the tumor-stroma ratio (TSR) has prognostic value in many cancers, the traditional semi-quantitative visual assessment method has inter-observer variability, making it impossible for clinical practice. We aimed to develop a machine learning (ML) algorithm for accurately quantifying TSR in h...
Autores principales: | Zheng, Qingyuan, Jiang, Zhengyu, Ni, Xinmiao, Yang, Song, Jiao, Panpan, Wu, Jiejun, Xiong, Lin, Yuan, Jingping, Wang, Jingsong, Jian, Jun, Wang, Lei, Yang, Rui, Chen, Zhiyuan, Liu, Xiuheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916896/ https://www.ncbi.nlm.nih.gov/pubmed/36769068 http://dx.doi.org/10.3390/ijms24032746 |
Ejemplares similares
-
Quantitative Assessment of Tumor-Infiltrating Lymphocytes Using Machine Learning Predicts Survival in Muscle-Invasive Bladder Cancer
por: Zheng, Qingyuan, et al.
Publicado: (2022) -
Accurate Diagnosis and Survival Prediction of Bladder Cancer Using Deep Learning on Histological Slides
por: Zheng, Qingyuan, et al.
Publicado: (2022) -
Predicting Lymph Node Metastasis Status from Primary Muscle-Invasive Bladder Cancer Histology Slides Using Deep Learning: A Retrospective Multicenter Study
por: Zheng, Qingyuan, et al.
Publicado: (2023) -
A Weakly Supervised Deep Learning Model and Human–Machine Fusion for Accurate Grading of Renal Cell Carcinoma from Histopathology Slides
por: Zheng, Qingyuan, et al.
Publicado: (2023) -
Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer
por: Zhao, Ke, et al.
Publicado: (2020)