Cargando…
Exploring AlphaFold2′s Performance on Predicting Amino Acid Side-Chain Conformations and Its Utility in Crystal Structure Determination of B318L Protein
Recent technological breakthroughs in machine-learning-based AlphaFold2 (AF2) are pushing the prediction accuracy of protein structures to an unprecedented level that is on par with experimental structural quality. Despite its outstanding structural modeling capability, further experimental validati...
Autores principales: | Zhao, Haifan, Zhang, Heng, She, Zhun, Gao, Zengqiang, Wang, Qi, Geng, Zhi, Dong, Yuhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916901/ https://www.ncbi.nlm.nih.gov/pubmed/36769074 http://dx.doi.org/10.3390/ijms24032740 |
Ejemplares similares
-
Approximating conformational Boltzmann distributions with AlphaFold2 predictions
por: Brown, Benjamin P., et al.
Publicado: (2023) -
Sampling alternative conformational states of transporters and receptors with AlphaFold2
por: del Alamo, Diego, et al.
Publicado: (2022) -
Accelerating crystal structure determination with iterative AlphaFold prediction
por: Terwilliger, Thomas C., et al.
Publicado: (2023) -
AlphaFold and the future of structural biology
por: Read, Randy J., et al.
Publicado: (2023) -
Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures
por: Al-Masri, Carmen, et al.
Publicado: (2023)