Cargando…

The Influence of Constraints on Gelation in a Controlling/Living Copolymerization Process

We developed a simple model of the copolymerization process in the formation of crosslinked macromolecular systems. A living copolymerization was carried out for free chains, in bulk and in a slit, as well as for grafted chains in a slit. In addition, polymer 2D brushes were placed in a slit with in...

Descripción completa

Detalles Bibliográficos
Autores principales: Polanowski, Piotr, Sikorski, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916906/
https://www.ncbi.nlm.nih.gov/pubmed/36769024
http://dx.doi.org/10.3390/ijms24032701
Descripción
Sumario:We developed a simple model of the copolymerization process in the formation of crosslinked macromolecular systems. A living copolymerization was carried out for free chains, in bulk and in a slit, as well as for grafted chains in a slit. In addition, polymer 2D brushes were placed in a slit with initiator molecules attached to one of the confining walls. Coarse-grained chains were embedded in the vertices of a face-centered cubic lattice with the excluded volume interactions. The simulations of the copolymerization processes were performed using the Dynamic Lattice Liquid algorithm, a version of the Monte Carlo method. The influence of the initial initiator to cross-linker ratio, slit width and grafting on the polymerization and on the gelation was examined. It was also shown that the influence of a confining slit was rather small, while the grafting of chains affected the location of the gel pint significantly.