Cargando…

In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near-Infrared Fluorescence Probe

Bladder cancer was the twelfth most common cancer worldwide in 2020. Although bladder cancer has been diagnosed using macroscopic techniques, such as white-light cystoscopy and fluorescence blue-light cystoscopy, there is a need to explore more effective noninvasive optical imaging techniques for ac...

Descripción completa

Detalles Bibliográficos
Autor principal: Teranishi, Katsunori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916938/
https://www.ncbi.nlm.nih.gov/pubmed/36768680
http://dx.doi.org/10.3390/ijms24032349
_version_ 1784886248253423616
author Teranishi, Katsunori
author_facet Teranishi, Katsunori
author_sort Teranishi, Katsunori
collection PubMed
description Bladder cancer was the twelfth most common cancer worldwide in 2020. Although bladder cancer has been diagnosed using macroscopic techniques, such as white-light cystoscopy and fluorescence blue-light cystoscopy, there is a need to explore more effective noninvasive optical imaging techniques for accurate bladder cancer diagnosis. This study demonstrates the high effectiveness of the near-infrared fluorescence (NIRF) probe ASP5354, which has been developed for ureteral identification during in vivo diagnosis of bladder cancer in an MB49 bladder cancer orthotopic mouse model. After the intravesical injection of 2.4 μM ASP5354 followed by bladder rinsing with saline at 5 min post injection or intravenous administration of ASP5354 at 240 nmol/kg mouse body weight, followed by a waiting period of 5–24 h in mice, ASP5354 was absorbed specifically by cancerous tissue and not by normal tissues in the bladder. NIRF of ASP5354 in cancer tissues was detected using the NIRF imaging camera system. The NIRF clearly showed a boundary between cancerous and normal tissues. Therefore, ASP5354 provides noninvasive and specific optical in vivo imaging of MB49 bladder cancer using intravesical or intravenous injection of ASP5354. ASP5354 may allow for new diagnostic applications for bladder cancer in humans.
format Online
Article
Text
id pubmed-9916938
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99169382023-02-11 In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near-Infrared Fluorescence Probe Teranishi, Katsunori Int J Mol Sci Article Bladder cancer was the twelfth most common cancer worldwide in 2020. Although bladder cancer has been diagnosed using macroscopic techniques, such as white-light cystoscopy and fluorescence blue-light cystoscopy, there is a need to explore more effective noninvasive optical imaging techniques for accurate bladder cancer diagnosis. This study demonstrates the high effectiveness of the near-infrared fluorescence (NIRF) probe ASP5354, which has been developed for ureteral identification during in vivo diagnosis of bladder cancer in an MB49 bladder cancer orthotopic mouse model. After the intravesical injection of 2.4 μM ASP5354 followed by bladder rinsing with saline at 5 min post injection or intravenous administration of ASP5354 at 240 nmol/kg mouse body weight, followed by a waiting period of 5–24 h in mice, ASP5354 was absorbed specifically by cancerous tissue and not by normal tissues in the bladder. NIRF of ASP5354 in cancer tissues was detected using the NIRF imaging camera system. The NIRF clearly showed a boundary between cancerous and normal tissues. Therefore, ASP5354 provides noninvasive and specific optical in vivo imaging of MB49 bladder cancer using intravesical or intravenous injection of ASP5354. ASP5354 may allow for new diagnostic applications for bladder cancer in humans. MDPI 2023-01-25 /pmc/articles/PMC9916938/ /pubmed/36768680 http://dx.doi.org/10.3390/ijms24032349 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Teranishi, Katsunori
In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near-Infrared Fluorescence Probe
title In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near-Infrared Fluorescence Probe
title_full In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near-Infrared Fluorescence Probe
title_fullStr In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near-Infrared Fluorescence Probe
title_full_unstemmed In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near-Infrared Fluorescence Probe
title_short In Vivo Optical Imaging of Bladder Cancer Tissues in an MB49 Bladder Cancer Orthotopic Mouse Model Using the Intravesical or Intravenous Administration of Near-Infrared Fluorescence Probe
title_sort in vivo optical imaging of bladder cancer tissues in an mb49 bladder cancer orthotopic mouse model using the intravesical or intravenous administration of near-infrared fluorescence probe
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916938/
https://www.ncbi.nlm.nih.gov/pubmed/36768680
http://dx.doi.org/10.3390/ijms24032349
work_keys_str_mv AT teranishikatsunori invivoopticalimagingofbladdercancertissuesinanmb49bladdercancerorthotopicmousemodelusingtheintravesicalorintravenousadministrationofnearinfraredfluorescenceprobe