Cargando…

Effect of Disulfiram on the Reproductive Capacity of Female Mice

In the process of assisted reproduction, the high-oxygen in vitro environment can easily cause oxidative damage to oocytes. Disulfiram (DSF) can play an anti-oxidant or pro-oxidant role in different cells, and the effect of DSF on oocytes remains unclear. Moreover, it remains unclear whether the use...

Descripción completa

Detalles Bibliográficos
Autores principales: Teng, Mingming, Luo, Yuan, Wang, Chan, Lei, Anmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916984/
https://www.ncbi.nlm.nih.gov/pubmed/36768698
http://dx.doi.org/10.3390/ijms24032371
Descripción
Sumario:In the process of assisted reproduction, the high-oxygen in vitro environment can easily cause oxidative damage to oocytes. Disulfiram (DSF) can play an anti-oxidant or pro-oxidant role in different cells, and the effect of DSF on oocytes remains unclear. Moreover, it remains unclear whether the use of DSF in the early stages of pregnancy has a negative impact on the fetus. In this study, we found that DSF increased serum FSH levels and increased the ovulation rate in mice. Moreover, DSF enhanced the antioxidant capacity of oocytes and contributed to the success rate of in vitro fertilization. Moreover, the use of DSF in early pregnancy in mice increased the uterine horn volume and the degree of vascularization, which contributed to a successful pregnancy. In addition, it was found that DSF regulated the mRNA expression of angiogenesis-related genes (VEGF), follicular development-related genes (C1QTNF3, mTOR and PI3K), ovulation-related genes (MAPK1, MAPK3 and p38 MAPK) and antioxidant-related genes (GPX4 and CAT). These results indicate that DSF is helpful for increasing the antioxidant capacity of oocytes and the ovulation rate. In early pregnancy in mice, DSF promotes pregnancy by increasing the degree and volume of uterine vascularization.