Cargando…
maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks
Transcription factors read the genome, fundamentally connecting DNA sequence to gene expression across diverse cell types. Determining how, where, and when TFs bind chromatin will advance our understanding of gene regulatory networks and cellular behavior. The 2017 ENCODE-DREAM in vivo Transcription...
Autores principales: | Cazares, Tareian A., Rizvi, Faiz W., Iyer, Balaji, Chen, Xiaoting, Kotliar, Michael, Bejjani, Anthony T., Wayman, Joseph A., Donmez, Omer, Wronowski, Benjamin, Parameswaran, Sreeja, Kottyan, Leah C., Barski, Artem, Weirauch, Matthew T., Prasath, V. B. Surya, Miraldi, Emily R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917285/ https://www.ncbi.nlm.nih.gov/pubmed/36719906 http://dx.doi.org/10.1371/journal.pcbi.1010863 |
Ejemplares similares
-
Comprehensive analysis of single cell ATAC-seq data with SnapATAC
por: Fang, Rongxin, et al.
Publicado: (2021) -
simATAC: a single-cell ATAC-seq simulation framework
por: Navidi, Zeinab, et al.
Publicado: (2021) -
I-ATAC: interactive pipeline for the management and pre-processing of ATAC-seq samples
por: Ahmed, Zeeshan, et al.
Publicado: (2017) -
esATAC: an easy-to-use systematic pipeline for ATAC-seq data analysis
por: Wei, Zheng, et al.
Publicado: (2018) -
Global discovery of lupus genetic risk variant allelic enhancer activity
por: Lu, Xiaoming, et al.
Publicado: (2021)