Cargando…
DeepTP: A Deep Learning Model for Thermophilic Protein Prediction
Thermophilic proteins have important value in the fields of biopharmaceuticals and enzyme engineering. Most existing thermophilic protein prediction models are based on traditional machine learning algorithms and do not fully utilize protein sequence information. To solve this problem, a deep learni...
Autores principales: | Zhao, Jianjun, Yan, Wenying, Yang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917291/ https://www.ncbi.nlm.nih.gov/pubmed/36768540 http://dx.doi.org/10.3390/ijms24032217 |
Ejemplares similares
-
DeepTM: A deep learning algorithm for prediction of melting temperature of thermophilic proteins directly from sequences
por: Li, Mengyu, et al.
Publicado: (2023) -
DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins
por: Fu, Hongli, et al.
Publicado: (2019) -
DeepPhos: prediction of protein phosphorylation sites with deep learning
por: Luo, Fenglin, et al.
Publicado: (2019) -
A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites
por: Long, Haixia, et al.
Publicado: (2018) -
Deep learning in prediction of intrinsic disorder in proteins
por: Zhao, Bi, et al.
Publicado: (2022)