Cargando…

Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients

Age acceleration (Age-A) is a useful tool that is able to predict a broad range of health outcomes. It is necessary to determine DNA methylation levels to estimate it, and it is known that Age-A is influenced by environmental, lifestyle, and vascular risk factors (VRF). The aim of this study is to e...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández-Pérez, Isabel, Jiménez-Balado, Joan, Lazcano, Uxue, Giralt-Steinhauer, Eva, Rey Álvarez, Lucía, Cuadrado-Godia, Elisa, Rodríguez-Campello, Ana, Macias-Gómez, Adrià, Suárez-Pérez, Antoni, Revert-Barberá, Anna, Estragués-Gázquez, Isabel, Soriano-Tarraga, Carolina, Roquer, Jaume, Ois, Angel, Jiménez-Conde, Jordi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917369/
https://www.ncbi.nlm.nih.gov/pubmed/36769083
http://dx.doi.org/10.3390/ijms24032759
_version_ 1784886349371801600
author Fernández-Pérez, Isabel
Jiménez-Balado, Joan
Lazcano, Uxue
Giralt-Steinhauer, Eva
Rey Álvarez, Lucía
Cuadrado-Godia, Elisa
Rodríguez-Campello, Ana
Macias-Gómez, Adrià
Suárez-Pérez, Antoni
Revert-Barberá, Anna
Estragués-Gázquez, Isabel
Soriano-Tarraga, Carolina
Roquer, Jaume
Ois, Angel
Jiménez-Conde, Jordi
author_facet Fernández-Pérez, Isabel
Jiménez-Balado, Joan
Lazcano, Uxue
Giralt-Steinhauer, Eva
Rey Álvarez, Lucía
Cuadrado-Godia, Elisa
Rodríguez-Campello, Ana
Macias-Gómez, Adrià
Suárez-Pérez, Antoni
Revert-Barberá, Anna
Estragués-Gázquez, Isabel
Soriano-Tarraga, Carolina
Roquer, Jaume
Ois, Angel
Jiménez-Conde, Jordi
author_sort Fernández-Pérez, Isabel
collection PubMed
description Age acceleration (Age-A) is a useful tool that is able to predict a broad range of health outcomes. It is necessary to determine DNA methylation levels to estimate it, and it is known that Age-A is influenced by environmental, lifestyle, and vascular risk factors (VRF). The aim of this study is to estimate the contribution of these easily measurable factors to Age-A in patients with cerebrovascular disease (CVD), using different machine learning (ML) approximations, and try to find a more accessible model able to predict Age-A. We studied a CVD cohort of 952 patients with information about VRF, lifestyle habits, and target organ damage. We estimated Age-A using Hannum’s epigenetic clock, and trained six different models to predict Age-A: a conventional linear regression model, four ML models (elastic net regression (EN), K-Nearest neighbors, random forest, and support vector machine models), and one deep learning approximation (multilayer perceptron (MLP) model). The best-performing models were EN and MLP; although, the predictive capability was modest (R(2) 0.358 and 0.378, respectively). In conclusion, our results support the influence of these factors on Age-A; although, they were not enough to explain most of its variability.
format Online
Article
Text
id pubmed-9917369
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99173692023-02-11 Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients Fernández-Pérez, Isabel Jiménez-Balado, Joan Lazcano, Uxue Giralt-Steinhauer, Eva Rey Álvarez, Lucía Cuadrado-Godia, Elisa Rodríguez-Campello, Ana Macias-Gómez, Adrià Suárez-Pérez, Antoni Revert-Barberá, Anna Estragués-Gázquez, Isabel Soriano-Tarraga, Carolina Roquer, Jaume Ois, Angel Jiménez-Conde, Jordi Int J Mol Sci Article Age acceleration (Age-A) is a useful tool that is able to predict a broad range of health outcomes. It is necessary to determine DNA methylation levels to estimate it, and it is known that Age-A is influenced by environmental, lifestyle, and vascular risk factors (VRF). The aim of this study is to estimate the contribution of these easily measurable factors to Age-A in patients with cerebrovascular disease (CVD), using different machine learning (ML) approximations, and try to find a more accessible model able to predict Age-A. We studied a CVD cohort of 952 patients with information about VRF, lifestyle habits, and target organ damage. We estimated Age-A using Hannum’s epigenetic clock, and trained six different models to predict Age-A: a conventional linear regression model, four ML models (elastic net regression (EN), K-Nearest neighbors, random forest, and support vector machine models), and one deep learning approximation (multilayer perceptron (MLP) model). The best-performing models were EN and MLP; although, the predictive capability was modest (R(2) 0.358 and 0.378, respectively). In conclusion, our results support the influence of these factors on Age-A; although, they were not enough to explain most of its variability. MDPI 2023-02-01 /pmc/articles/PMC9917369/ /pubmed/36769083 http://dx.doi.org/10.3390/ijms24032759 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fernández-Pérez, Isabel
Jiménez-Balado, Joan
Lazcano, Uxue
Giralt-Steinhauer, Eva
Rey Álvarez, Lucía
Cuadrado-Godia, Elisa
Rodríguez-Campello, Ana
Macias-Gómez, Adrià
Suárez-Pérez, Antoni
Revert-Barberá, Anna
Estragués-Gázquez, Isabel
Soriano-Tarraga, Carolina
Roquer, Jaume
Ois, Angel
Jiménez-Conde, Jordi
Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients
title Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients
title_full Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients
title_fullStr Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients
title_full_unstemmed Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients
title_short Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients
title_sort machine learning approximations to predict epigenetic age acceleration in stroke patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917369/
https://www.ncbi.nlm.nih.gov/pubmed/36769083
http://dx.doi.org/10.3390/ijms24032759
work_keys_str_mv AT fernandezperezisabel machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT jimenezbaladojoan machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT lazcanouxue machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT giraltsteinhauereva machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT reyalvarezlucia machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT cuadradogodiaelisa machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT rodriguezcampelloana machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT maciasgomezadria machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT suarezperezantoni machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT revertbarberaanna machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT estraguesgazquezisabel machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT sorianotarragacarolina machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT roquerjaume machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT oisangel machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients
AT jimenezcondejordi machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients