Cargando…
Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients
Age acceleration (Age-A) is a useful tool that is able to predict a broad range of health outcomes. It is necessary to determine DNA methylation levels to estimate it, and it is known that Age-A is influenced by environmental, lifestyle, and vascular risk factors (VRF). The aim of this study is to e...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917369/ https://www.ncbi.nlm.nih.gov/pubmed/36769083 http://dx.doi.org/10.3390/ijms24032759 |
_version_ | 1784886349371801600 |
---|---|
author | Fernández-Pérez, Isabel Jiménez-Balado, Joan Lazcano, Uxue Giralt-Steinhauer, Eva Rey Álvarez, Lucía Cuadrado-Godia, Elisa Rodríguez-Campello, Ana Macias-Gómez, Adrià Suárez-Pérez, Antoni Revert-Barberá, Anna Estragués-Gázquez, Isabel Soriano-Tarraga, Carolina Roquer, Jaume Ois, Angel Jiménez-Conde, Jordi |
author_facet | Fernández-Pérez, Isabel Jiménez-Balado, Joan Lazcano, Uxue Giralt-Steinhauer, Eva Rey Álvarez, Lucía Cuadrado-Godia, Elisa Rodríguez-Campello, Ana Macias-Gómez, Adrià Suárez-Pérez, Antoni Revert-Barberá, Anna Estragués-Gázquez, Isabel Soriano-Tarraga, Carolina Roquer, Jaume Ois, Angel Jiménez-Conde, Jordi |
author_sort | Fernández-Pérez, Isabel |
collection | PubMed |
description | Age acceleration (Age-A) is a useful tool that is able to predict a broad range of health outcomes. It is necessary to determine DNA methylation levels to estimate it, and it is known that Age-A is influenced by environmental, lifestyle, and vascular risk factors (VRF). The aim of this study is to estimate the contribution of these easily measurable factors to Age-A in patients with cerebrovascular disease (CVD), using different machine learning (ML) approximations, and try to find a more accessible model able to predict Age-A. We studied a CVD cohort of 952 patients with information about VRF, lifestyle habits, and target organ damage. We estimated Age-A using Hannum’s epigenetic clock, and trained six different models to predict Age-A: a conventional linear regression model, four ML models (elastic net regression (EN), K-Nearest neighbors, random forest, and support vector machine models), and one deep learning approximation (multilayer perceptron (MLP) model). The best-performing models were EN and MLP; although, the predictive capability was modest (R(2) 0.358 and 0.378, respectively). In conclusion, our results support the influence of these factors on Age-A; although, they were not enough to explain most of its variability. |
format | Online Article Text |
id | pubmed-9917369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99173692023-02-11 Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients Fernández-Pérez, Isabel Jiménez-Balado, Joan Lazcano, Uxue Giralt-Steinhauer, Eva Rey Álvarez, Lucía Cuadrado-Godia, Elisa Rodríguez-Campello, Ana Macias-Gómez, Adrià Suárez-Pérez, Antoni Revert-Barberá, Anna Estragués-Gázquez, Isabel Soriano-Tarraga, Carolina Roquer, Jaume Ois, Angel Jiménez-Conde, Jordi Int J Mol Sci Article Age acceleration (Age-A) is a useful tool that is able to predict a broad range of health outcomes. It is necessary to determine DNA methylation levels to estimate it, and it is known that Age-A is influenced by environmental, lifestyle, and vascular risk factors (VRF). The aim of this study is to estimate the contribution of these easily measurable factors to Age-A in patients with cerebrovascular disease (CVD), using different machine learning (ML) approximations, and try to find a more accessible model able to predict Age-A. We studied a CVD cohort of 952 patients with information about VRF, lifestyle habits, and target organ damage. We estimated Age-A using Hannum’s epigenetic clock, and trained six different models to predict Age-A: a conventional linear regression model, four ML models (elastic net regression (EN), K-Nearest neighbors, random forest, and support vector machine models), and one deep learning approximation (multilayer perceptron (MLP) model). The best-performing models were EN and MLP; although, the predictive capability was modest (R(2) 0.358 and 0.378, respectively). In conclusion, our results support the influence of these factors on Age-A; although, they were not enough to explain most of its variability. MDPI 2023-02-01 /pmc/articles/PMC9917369/ /pubmed/36769083 http://dx.doi.org/10.3390/ijms24032759 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fernández-Pérez, Isabel Jiménez-Balado, Joan Lazcano, Uxue Giralt-Steinhauer, Eva Rey Álvarez, Lucía Cuadrado-Godia, Elisa Rodríguez-Campello, Ana Macias-Gómez, Adrià Suárez-Pérez, Antoni Revert-Barberá, Anna Estragués-Gázquez, Isabel Soriano-Tarraga, Carolina Roquer, Jaume Ois, Angel Jiménez-Conde, Jordi Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients |
title | Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients |
title_full | Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients |
title_fullStr | Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients |
title_full_unstemmed | Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients |
title_short | Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients |
title_sort | machine learning approximations to predict epigenetic age acceleration in stroke patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917369/ https://www.ncbi.nlm.nih.gov/pubmed/36769083 http://dx.doi.org/10.3390/ijms24032759 |
work_keys_str_mv | AT fernandezperezisabel machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT jimenezbaladojoan machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT lazcanouxue machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT giraltsteinhauereva machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT reyalvarezlucia machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT cuadradogodiaelisa machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT rodriguezcampelloana machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT maciasgomezadria machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT suarezperezantoni machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT revertbarberaanna machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT estraguesgazquezisabel machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT sorianotarragacarolina machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT roquerjaume machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT oisangel machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients AT jimenezcondejordi machinelearningapproximationstopredictepigeneticageaccelerationinstrokepatients |