Cargando…

Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants

Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the br...

Descripción completa

Detalles Bibliográficos
Autores principales: Pathak, Dhruba, Sriram, Krishnan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917383/
https://www.ncbi.nlm.nih.gov/pubmed/36768596
http://dx.doi.org/10.3390/ijms24032272
_version_ 1784886352853073920
author Pathak, Dhruba
Sriram, Krishnan
author_facet Pathak, Dhruba
Sriram, Krishnan
author_sort Pathak, Dhruba
collection PubMed
description Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the brain causes the subsequent activation of glial cells, a response known as ‘reactive gliosis’. Reactive glial cells secrete a wide variety of signaling molecules in response to neuronal perturbations and thus play a crucial role in the progression and regulation of central nervous system (CNS) injury. In parallel, the roles of protein phosphorylation and cell signaling in eliciting neuroinflammation are evolving. However, there is limited understanding of the molecular underpinnings associated with toxicant- or occupational injury-mediated neuroinflammation, gliosis, and neurological outcomes. The activation of signaling molecules has biological significance, including the promotion or inhibition of disease mechanisms. Nevertheless, the regulatory mechanisms of synergism or antagonism among intracellular signaling pathways remain elusive. This review highlights the research focusing on the direct interaction between the immune system and the toxicant- or occupational injury-induced gliosis. Specifically, the role of occupational injuries, e.g., trips, slips, and falls resulting in traumatic brain injury, and occupational toxicants, e.g., volatile organic compounds, metals, and nanoparticles/nanomaterials in the development of neuroinflammation and neurological or neurodegenerative diseases are highlighted. Further, this review recapitulates the recent advancement related to the characterization of the molecular mechanisms comprising protein phosphorylation and cell signaling, culminating in neuroinflammation.
format Online
Article
Text
id pubmed-9917383
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99173832023-02-11 Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants Pathak, Dhruba Sriram, Krishnan Int J Mol Sci Review Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the brain causes the subsequent activation of glial cells, a response known as ‘reactive gliosis’. Reactive glial cells secrete a wide variety of signaling molecules in response to neuronal perturbations and thus play a crucial role in the progression and regulation of central nervous system (CNS) injury. In parallel, the roles of protein phosphorylation and cell signaling in eliciting neuroinflammation are evolving. However, there is limited understanding of the molecular underpinnings associated with toxicant- or occupational injury-mediated neuroinflammation, gliosis, and neurological outcomes. The activation of signaling molecules has biological significance, including the promotion or inhibition of disease mechanisms. Nevertheless, the regulatory mechanisms of synergism or antagonism among intracellular signaling pathways remain elusive. This review highlights the research focusing on the direct interaction between the immune system and the toxicant- or occupational injury-induced gliosis. Specifically, the role of occupational injuries, e.g., trips, slips, and falls resulting in traumatic brain injury, and occupational toxicants, e.g., volatile organic compounds, metals, and nanoparticles/nanomaterials in the development of neuroinflammation and neurological or neurodegenerative diseases are highlighted. Further, this review recapitulates the recent advancement related to the characterization of the molecular mechanisms comprising protein phosphorylation and cell signaling, culminating in neuroinflammation. MDPI 2023-01-23 /pmc/articles/PMC9917383/ /pubmed/36768596 http://dx.doi.org/10.3390/ijms24032272 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Pathak, Dhruba
Sriram, Krishnan
Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants
title Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants
title_full Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants
title_fullStr Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants
title_full_unstemmed Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants
title_short Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants
title_sort molecular mechanisms underlying neuroinflammation elicited by occupational injuries and toxicants
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917383/
https://www.ncbi.nlm.nih.gov/pubmed/36768596
http://dx.doi.org/10.3390/ijms24032272
work_keys_str_mv AT pathakdhruba molecularmechanismsunderlyingneuroinflammationelicitedbyoccupationalinjuriesandtoxicants
AT sriramkrishnan molecularmechanismsunderlyingneuroinflammationelicitedbyoccupationalinjuriesandtoxicants