Cargando…
Effects of Temperature and Salt Stress on the Expression of delta-12 Fatty Acid Desaturase Genes and Fatty Acid Compositions in Safflower
The regulation of microsomal (e.g., FAD2) and plastidial (e.g., FAD6) oleate desaturases by cold, heat and salt stress were investigated. Gene expression levels and fatty acid compositions were determined in the roots, stems and leaves of safflower following stress treatments. A safflower plastidial...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917387/ https://www.ncbi.nlm.nih.gov/pubmed/36769084 http://dx.doi.org/10.3390/ijms24032765 |
Sumario: | The regulation of microsomal (e.g., FAD2) and plastidial (e.g., FAD6) oleate desaturases by cold, heat and salt stress were investigated. Gene expression levels and fatty acid compositions were determined in the roots, stems and leaves of safflower following stress treatments. A safflower plastidial oleate desaturase gene, CtFAD6, was cloned, and oleic acid desaturation was confirmed in Synechococcus sp. strain PCC7942. The results showed that temperature regulated oleate desaturation at the transcriptional level, and this regulation pattern was tissue-specific. CtFAD2-1, CtFAD2-2 and CtFAD6 were significantly induced under cold and heat stress in young leaves, and CtFAD2-2 and CtFAD6 were slightly induced in young stems. In contrast, CtFAD2-1, CtFAD2-11 and CtFAD2-10 were sensitive to salt stress in all safflower tissues (roots, stem and leaves). CtFAD6 was insensitive to salt and was slightly induced in leaves only. |
---|