Cargando…
Polyethylenimine-Crosslinked 3-Aminopropyltriethoxysilane-Grafted Multiwall Carbon Nanotubes for Efficient Adsorption of Reactive Yellow 2 from Water
This research intended to report amine-functionalized multiwall carbon nanotubes (MWCNTs) prepared by a simple method for efficient and rapid removal of Reactive Yellow 2 (RY2) from water. EDS analysis showed that the N content increased from 0 to 2.42% and from 2.42 to 8.66% after modification by 3...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917493/ https://www.ncbi.nlm.nih.gov/pubmed/36769277 http://dx.doi.org/10.3390/ijms24032954 |
_version_ | 1784886379914723328 |
---|---|
author | Wang, Zhuo Won, Sung Wook |
author_facet | Wang, Zhuo Won, Sung Wook |
author_sort | Wang, Zhuo |
collection | PubMed |
description | This research intended to report amine-functionalized multiwall carbon nanotubes (MWCNTs) prepared by a simple method for efficient and rapid removal of Reactive Yellow 2 (RY2) from water. EDS analysis showed that the N content increased from 0 to 2.42% and from 2.42 to 8.66% after modification by 3-Aminopropyltriethoxysilane (APTES) and polyethylenimine (PEI), respectively. BET analysis displayed that the specific surface area, average pore size, and total pore volume were reduced from 405.22 to 176.16 m(2)/g, 39.67 to 6.30 nm, and 4.02 to 0.28 cm(3)/g, respectively. These results proved that the PEI/APTES-MWCNTs were successfully prepared. pH edge experiments indicated that pH 2 was optimal for RY2 removal. At pH 2 and 25 °C, the time required for adsorption equilibrium was 10, 15, and 180 min at initial concentrations of 50, 100, and 200 mg/L, respectively; and the maximum RY2 uptake calculated by the Langmuir model was 714.29 mg/g. Thermodynamic studies revealed that the adsorption process was spontaneous and endothermic. Moreover, 0–0.1 mol/L of NaCl showed negligible effect on RY2 removal by PEI/APTES-MWCNTs. Five adsorption/desorption cycles confirmed the good reusability of PEI/APTES-MWCNTs in RY2 removal. Overall, the PEI/APTES-MWCNTs are a potential and efficient adsorbent for reactive dye wastewater treatment. |
format | Online Article Text |
id | pubmed-9917493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99174932023-02-11 Polyethylenimine-Crosslinked 3-Aminopropyltriethoxysilane-Grafted Multiwall Carbon Nanotubes for Efficient Adsorption of Reactive Yellow 2 from Water Wang, Zhuo Won, Sung Wook Int J Mol Sci Article This research intended to report amine-functionalized multiwall carbon nanotubes (MWCNTs) prepared by a simple method for efficient and rapid removal of Reactive Yellow 2 (RY2) from water. EDS analysis showed that the N content increased from 0 to 2.42% and from 2.42 to 8.66% after modification by 3-Aminopropyltriethoxysilane (APTES) and polyethylenimine (PEI), respectively. BET analysis displayed that the specific surface area, average pore size, and total pore volume were reduced from 405.22 to 176.16 m(2)/g, 39.67 to 6.30 nm, and 4.02 to 0.28 cm(3)/g, respectively. These results proved that the PEI/APTES-MWCNTs were successfully prepared. pH edge experiments indicated that pH 2 was optimal for RY2 removal. At pH 2 and 25 °C, the time required for adsorption equilibrium was 10, 15, and 180 min at initial concentrations of 50, 100, and 200 mg/L, respectively; and the maximum RY2 uptake calculated by the Langmuir model was 714.29 mg/g. Thermodynamic studies revealed that the adsorption process was spontaneous and endothermic. Moreover, 0–0.1 mol/L of NaCl showed negligible effect on RY2 removal by PEI/APTES-MWCNTs. Five adsorption/desorption cycles confirmed the good reusability of PEI/APTES-MWCNTs in RY2 removal. Overall, the PEI/APTES-MWCNTs are a potential and efficient adsorbent for reactive dye wastewater treatment. MDPI 2023-02-03 /pmc/articles/PMC9917493/ /pubmed/36769277 http://dx.doi.org/10.3390/ijms24032954 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Zhuo Won, Sung Wook Polyethylenimine-Crosslinked 3-Aminopropyltriethoxysilane-Grafted Multiwall Carbon Nanotubes for Efficient Adsorption of Reactive Yellow 2 from Water |
title | Polyethylenimine-Crosslinked 3-Aminopropyltriethoxysilane-Grafted Multiwall Carbon Nanotubes for Efficient Adsorption of Reactive Yellow 2 from Water |
title_full | Polyethylenimine-Crosslinked 3-Aminopropyltriethoxysilane-Grafted Multiwall Carbon Nanotubes for Efficient Adsorption of Reactive Yellow 2 from Water |
title_fullStr | Polyethylenimine-Crosslinked 3-Aminopropyltriethoxysilane-Grafted Multiwall Carbon Nanotubes for Efficient Adsorption of Reactive Yellow 2 from Water |
title_full_unstemmed | Polyethylenimine-Crosslinked 3-Aminopropyltriethoxysilane-Grafted Multiwall Carbon Nanotubes for Efficient Adsorption of Reactive Yellow 2 from Water |
title_short | Polyethylenimine-Crosslinked 3-Aminopropyltriethoxysilane-Grafted Multiwall Carbon Nanotubes for Efficient Adsorption of Reactive Yellow 2 from Water |
title_sort | polyethylenimine-crosslinked 3-aminopropyltriethoxysilane-grafted multiwall carbon nanotubes for efficient adsorption of reactive yellow 2 from water |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917493/ https://www.ncbi.nlm.nih.gov/pubmed/36769277 http://dx.doi.org/10.3390/ijms24032954 |
work_keys_str_mv | AT wangzhuo polyethyleniminecrosslinked3aminopropyltriethoxysilanegraftedmultiwallcarbonnanotubesforefficientadsorptionofreactiveyellow2fromwater AT wonsungwook polyethyleniminecrosslinked3aminopropyltriethoxysilanegraftedmultiwallcarbonnanotubesforefficientadsorptionofreactiveyellow2fromwater |