Cargando…
Developing an Interpretable Machine Learning Model to Predict in-Hospital Mortality in Sepsis Patients: A Retrospective Temporal Validation Study
Background: Risk stratification plays an essential role in the decision making for sepsis management, as existing approaches can hardly satisfy the need to assess this heterogeneous population. We aimed to develop and validate a machine learning model to predict in-hospital mortality in critically i...
Autores principales: | Li, Shuhe, Dou, Ruoxu, Song, Xiaodong, Lui, Ka Yin, Xu, Jinghong, Guo, Zilu, Hu, Xiaoguang, Guan, Xiangdong, Cai, Changjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917524/ https://www.ncbi.nlm.nih.gov/pubmed/36769564 http://dx.doi.org/10.3390/jcm12030915 |
Ejemplares similares
-
Association of Sex With Clinical Outcome in Critically Ill Sepsis Patients: A Retrospective Analysis of the Large Clinical Database MIMIC-III
por: Xu, Jinghong, et al.
Publicado: (2019) -
The neutrophil-to-lymphocyte ratio: A potential predictor of poor prognosis in adult patients with trauma and traumatic brain injury
por: Xu, Jinghong, et al.
Publicado: (2022) -
Upregulation of the microRNA rno-miR-146b-5p may be involved in the development of intestinal injury through inhibition of Kruppel-like factor 4 in intestinal sepsis
por: Tong, Li, et al.
Publicado: (2020) -
Machine learning for early detection of sepsis: an internal and temporal validation study
por: Bedoya, Armando D, et al.
Publicado: (2020) -
Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study
por: Hu, Chang, et al.
Publicado: (2022)