Cargando…
A Neural Network for Automated Image Quality Assessment of Optic Disc Photographs
This study describes the development of a convolutional neural network (CNN) for automated assessment of optic disc photograph quality. Using a code-free deep learning platform, a total of 2377 optic disc photographs were used to develop a deep CNN capable of determining optic disc photograph qualit...
Autores principales: | Bouris, Ella, Davis, Tyler, Morales, Esteban, Grassi, Lourdes, Salazar Vega, Diana, Caprioli, Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917571/ https://www.ncbi.nlm.nih.gov/pubmed/36769865 http://dx.doi.org/10.3390/jcm12031217 |
Ejemplares similares
-
RimNet: A Deep Neural Network Pipeline for Automated Identification of the Optic Disc Rim
por: Rasheed, Haroon Adam, et al.
Publicado: (2022) -
A Deep Learning System for Automated Quality Evaluation of Optic Disc Photographs in Neuro-Ophthalmic Disorders
por: Chan, Ebenezer, et al.
Publicado: (2023) -
DDLSNet: A Novel Deep Learning-Based System for Grading Funduscopic Images for Glaucomatous Damage
por: Rasheed, Haroon Adam, et al.
Publicado: (2022) -
A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
por: Fu, Huazhu, et al.
Publicado: (2020) -
Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression
por: Amini, Navid, et al.
Publicado: (2017)