Cargando…

Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2

There are a number of uncertainties regarding plasma protein binding and blood distribution of the active drugs favipiravir (FAVI), molnupiravir (MOLNU) and imatinib (IMA), which were recently proposed as therapeutics for the treatment of COVID-19 disease. Therefore, proton dissociation processes, s...

Descripción completa

Detalles Bibliográficos
Autores principales: Dömötör, Orsolya, Enyedy, Éva A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917862/
https://www.ncbi.nlm.nih.gov/pubmed/36769193
http://dx.doi.org/10.3390/ijms24032849
_version_ 1784886470228574208
author Dömötör, Orsolya
Enyedy, Éva A.
author_facet Dömötör, Orsolya
Enyedy, Éva A.
author_sort Dömötör, Orsolya
collection PubMed
description There are a number of uncertainties regarding plasma protein binding and blood distribution of the active drugs favipiravir (FAVI), molnupiravir (MOLNU) and imatinib (IMA), which were recently proposed as therapeutics for the treatment of COVID-19 disease. Therefore, proton dissociation processes, solubility, lipophilicity, and serum protein binding of these three substances were investigated in detail. The drugs display various degrees of lipophilicity at gastric (pH 2.0) and blood pH (pH 7.4). The determined pK(a) values explain well the changes in lipophilic character of the respective compounds. The serum protein binding was studied by membrane ultrafiltration, frontal analysis capillary electrophoresis, steady-state fluorometry, and fluorescence anisotropy techniques. The studies revealed that the ester bond in MOLNU is hydrolyzed by protein constituents of blood serum. Molnupiravir and its hydrolyzed form do not bind considerably to blood proteins. Likewise, FAVI does not bind to human serum albumin (HSA) and α1-acid glycoprotein (AGP) and shows relatively weak binding to the protein fraction of whole blood serum. Imatinib binds to AGP with high affinity (logK′ = 5.8–6.0), while its binding to HSA is much weaker (logK′ ≤ 4.0). The computed constants were used to model the distribution of IMA in blood plasma under physiological and ‘acute-phase’ conditions as well.
format Online
Article
Text
id pubmed-9917862
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99178622023-02-11 Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2 Dömötör, Orsolya Enyedy, Éva A. Int J Mol Sci Article There are a number of uncertainties regarding plasma protein binding and blood distribution of the active drugs favipiravir (FAVI), molnupiravir (MOLNU) and imatinib (IMA), which were recently proposed as therapeutics for the treatment of COVID-19 disease. Therefore, proton dissociation processes, solubility, lipophilicity, and serum protein binding of these three substances were investigated in detail. The drugs display various degrees of lipophilicity at gastric (pH 2.0) and blood pH (pH 7.4). The determined pK(a) values explain well the changes in lipophilic character of the respective compounds. The serum protein binding was studied by membrane ultrafiltration, frontal analysis capillary electrophoresis, steady-state fluorometry, and fluorescence anisotropy techniques. The studies revealed that the ester bond in MOLNU is hydrolyzed by protein constituents of blood serum. Molnupiravir and its hydrolyzed form do not bind considerably to blood proteins. Likewise, FAVI does not bind to human serum albumin (HSA) and α1-acid glycoprotein (AGP) and shows relatively weak binding to the protein fraction of whole blood serum. Imatinib binds to AGP with high affinity (logK′ = 5.8–6.0), while its binding to HSA is much weaker (logK′ ≤ 4.0). The computed constants were used to model the distribution of IMA in blood plasma under physiological and ‘acute-phase’ conditions as well. MDPI 2023-02-02 /pmc/articles/PMC9917862/ /pubmed/36769193 http://dx.doi.org/10.3390/ijms24032849 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dömötör, Orsolya
Enyedy, Éva A.
Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2
title Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2
title_full Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2
title_fullStr Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2
title_full_unstemmed Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2
title_short Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2
title_sort evaluation of in vitro distribution and plasma protein binding of selected antiviral drugs (favipiravir, molnupiravir and imatinib) against sars-cov-2
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917862/
https://www.ncbi.nlm.nih.gov/pubmed/36769193
http://dx.doi.org/10.3390/ijms24032849
work_keys_str_mv AT domotororsolya evaluationofinvitrodistributionandplasmaproteinbindingofselectedantiviraldrugsfavipiravirmolnupiravirandimatinibagainstsarscov2
AT enyedyevaa evaluationofinvitrodistributionandplasmaproteinbindingofselectedantiviraldrugsfavipiravirmolnupiravirandimatinibagainstsarscov2