Cargando…
Martensite Start Temperature Prediction through a Deep Learning Strategy Using Both Microstructure Images and Composition Data
In recent decades, various previous research has established empirical formulae or thermodynamic models for martensite start temperature (Ms) prediction. However, most of this research has mainly considered the effect of composition and ignored complex microstructural factors, such as morphology, th...
Autores principales: | Yang, Zenan, Li, Yong, Wei, Xiaolu, Wang, Xu, Wang, Chenchong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917892/ https://www.ncbi.nlm.nih.gov/pubmed/36769939 http://dx.doi.org/10.3390/ma16030932 |
Ejemplares similares
-
Prediction of Deformation-Induced Martensite Start Temperature by Convolutional Neural Network with Dual Mode Features
por: Wang, Chenchong, et al.
Publicado: (2022) -
Local Maxima in Martensite Start Temperatures in the Transition Region between Lath and Plate Martensite in Fe-Ni Alloys
por: Thome, Pascal, et al.
Publicado: (2023) -
Microstructure and cleavage in lath martensitic steels
por: Morris, John W, et al.
Publicado: (2013) -
Quantum-mechanical analysis of effect of alloying elements on ε-martensite start temperature of steels
por: Jang, J. H., et al.
Publicado: (2017) -
Effects of the Tempering and High-Pressure Torsion Temperatures on Microstructure of Ferritic/Martensitic Steel Grade 91
por: Ganeev, Artur, et al.
Publicado: (2018)