Cargando…
Identification of a Novel Frameshift Variant of ARR3 Related to X-Linked Female-Limited Early-Onset High Myopia and Study on the Effect of X Chromosome Inactivation on the Myopia Severity
X-linked myopia 26 (Myopia 26, MIM #301010), which is caused by the variants of ARR3 (MIM *301770), is characterized by female-limited early-onset high myopia (eo-HM). Clinical characteristics include a tigroid appearance in the fundus and a temporal crescent of the optic nerve head. At present, the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917903/ https://www.ncbi.nlm.nih.gov/pubmed/36769483 http://dx.doi.org/10.3390/jcm12030835 |
Sumario: | X-linked myopia 26 (Myopia 26, MIM #301010), which is caused by the variants of ARR3 (MIM *301770), is characterized by female-limited early-onset high myopia (eo-HM). Clinical characteristics include a tigroid appearance in the fundus and a temporal crescent of the optic nerve head. At present, the limited literature on eo-HM caused by ARR3 mutations shows that its inheritance mode is complex, which brings certain difficulties to pre-pregnancy genetic counseling, pre-implantation genetic diagnosis, and prenatal diagnosis. Here, we investigated the genetic underpinning of a Chinese family with eo-HM. Whole exome sequencing of the proband revealed a novel frameshift mutation in ARR3 (NM_004312, exon10, c.666delC, p. Asn222LysfsTer22). Although the mode of inheritance of the eo-HM family fits the X-linked pattern of ARR3, the phenotypes of three patients deviate from the typical early-onset high myopia. Through X-chromosome inactivation experiments, the patient’s different phenotypes can be precisely explained. In addition, this study not only enhanced the correlation between ARR3 and early-onset high myopia but also provided explanations for different phenotypes, which may inspire follow-up studies. Our results enrich the knowledge of the variant spectrum in ARR3 and provide critical information for preimplantation and prenatal genetic testing, diagnosis, and counseling. |
---|