Cargando…
Prediction of Functional Outcome in Stroke Patients with Proximal Middle Cerebral Artery Occlusions Using Machine Learning Models
At present, clinicians are expected to manage a large volume of complex clinical, laboratory, and imaging data, necessitating sophisticated analytic approaches. Machine learning-based models can use this vast amount of data to create forecasting models. We aimed to predict short- and medium-term fun...
Autores principales: | Ozkara, Burak B., Karabacak, Mert, Hamam, Omar, Wang, Richard, Kotha, Apoorva, Khalili, Neda, Hoseinyazdi, Meisam, Chen, Melissa M., Wintermark, Max, Yedavalli, Vivek S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918022/ https://www.ncbi.nlm.nih.gov/pubmed/36769491 http://dx.doi.org/10.3390/jcm12030839 |
Ejemplares similares
-
Development of machine learning models for predicting outcome in patients with distal medium vessel occlusions: a retrospective study
por: Ozkara, Burak Berksu, et al.
Publicado: (2023) -
Prediction of Poor Outcome after Successful Thrombectomy in Patients with Severe Acute Ischemic Stroke: A Pilot Retrospective Study
por: Ozkara, Burak B., et al.
Publicado: (2023) -
Groin Puncture to Recanalization Time May Be a Strong Predictor of mTICI 2c/3 over mTICI 2b in Patients with Large Vessel Occlusions Successfully Recanalized with Mechanical Thrombectomy
por: Wang, Richard, et al.
Publicado: (2022) -
Assessment of Computed Tomography Perfusion Research Landscape: A Topic Modeling Study
por: Ozkara, Burak B., et al.
Publicado: (2023) -
The Advent of Generative Language Models in Medical Education
por: Karabacak, Mert, et al.
Publicado: (2023)