Cargando…
A Deep Learning Model for Evaluating Meibomian Glands Morphology from Meibography
To develop a deep learning model for automatically segmenting tarsus and meibomian gland areas on meibography, we included 1087 meibography images from dry eye patients. The contour of the tarsus and each meibomian gland was labeled manually by human experts. The dataset was divided into training, v...
Autores principales: | Wang, Yuexin, Shi, Faqiang, Wei, Shanshan, Li, Xuemin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918190/ https://www.ncbi.nlm.nih.gov/pubmed/36769701 http://dx.doi.org/10.3390/jcm12031053 |
Ejemplares similares
-
Deep learning-based automatic meibomian gland segmentation and morphology assessment in infrared meibography
por: Setu, Md Asif Khan, et al.
Publicado: (2021) -
A Deep Learning Approach for Meibomian Gland Atrophy Evaluation in Meibography Images
por: Wang, Jiayun, et al.
Publicado: (2019) -
Risk Factors for Meibomian Gland Disease Assessed by Meibography
por: Kim, Christine K, et al.
Publicado: (2023) -
A simple technique of meibography for morphological and functional evaluation of meibomian glands in dry eye conditions
por: Mounika, Vala, et al.
Publicado: (2023) -
Quantitative analysis of morphological and functional features in Meibography for Meibomian Gland Dysfunction: Diagnosis and Grading
por: Deng, Yuqing, et al.
Publicado: (2021)