Cargando…

Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit

Actigraphy is a tool used to describe limb motor activity. Some actigraphic parameters, namely Motor Activity (MA) and Asymmetry Index (AR), correlate with stroke severity. However, a long-lasting actigraphic monitoring was never performed previously. We hypothesized that MA and AR can describe diff...

Descripción completa

Detalles Bibliográficos
Autores principales: Reale, Giuseppe, Iacovelli, Chiara, Rabuffetti, Marco, Manganotti, Paolo, Marinelli, Lucio, Sacco, Simona, Furlanis, Giovanni, Ajčević, Miloš, Zauli, Aurelia, Moci, Marco, Giovannini, Silvia, Crosetti, Simona, Grazzini, Matteo, Castiglia, Stefano Filippo, Podestà, Matteo, Calabresi, Paolo, Ferrarin, Maurizio, Caliandro, Pietro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918210/
https://www.ncbi.nlm.nih.gov/pubmed/36769826
http://dx.doi.org/10.3390/jcm12031178
_version_ 1784886557801447424
author Reale, Giuseppe
Iacovelli, Chiara
Rabuffetti, Marco
Manganotti, Paolo
Marinelli, Lucio
Sacco, Simona
Furlanis, Giovanni
Ajčević, Miloš
Zauli, Aurelia
Moci, Marco
Giovannini, Silvia
Crosetti, Simona
Grazzini, Matteo
Castiglia, Stefano Filippo
Podestà, Matteo
Calabresi, Paolo
Ferrarin, Maurizio
Caliandro, Pietro
author_facet Reale, Giuseppe
Iacovelli, Chiara
Rabuffetti, Marco
Manganotti, Paolo
Marinelli, Lucio
Sacco, Simona
Furlanis, Giovanni
Ajčević, Miloš
Zauli, Aurelia
Moci, Marco
Giovannini, Silvia
Crosetti, Simona
Grazzini, Matteo
Castiglia, Stefano Filippo
Podestà, Matteo
Calabresi, Paolo
Ferrarin, Maurizio
Caliandro, Pietro
author_sort Reale, Giuseppe
collection PubMed
description Actigraphy is a tool used to describe limb motor activity. Some actigraphic parameters, namely Motor Activity (MA) and Asymmetry Index (AR), correlate with stroke severity. However, a long-lasting actigraphic monitoring was never performed previously. We hypothesized that MA and AR can describe different clinical conditions during the evolution of the acute phase of stroke. We conducted a multicenter study and enrolled 69 stroke patients. NIHSS was assessed every hour and upper limbs’ motor activity was continuously recorded. We calculated MA and AR in the first hour after admission, after a significant clinical change (NIHSS ± 4) or at discharge. In a control group of 17 subjects, we calculated MA and AR normative values. We defined the best model to predict clinical status with multiple linear regression and identified actigraphic cut-off values to discriminate minor from major stroke (NIHSS ≥ 5) and NIHSS 5–9 from NIHSS ≥ 10. The AR cut-off value to discriminate between minor and major stroke (namely NIHSS ≥ 5) is 27% (sensitivity = 83%, specificity = 76% (AUC 0.86 p < 0.001), PPV = 89%, NPV = 42%). However, the combination of AR and MA of the non-paretic arm is the best model to predict NIHSS score (R(2): 0.482, F: 54.13), discriminating minor from major stroke (sensitivity = 89%, specificity = 82%, PPV = 92%, NPV = 75%). The AR cut-off value of 53% identifies very severe stroke patients (NIHSS ≥ 10) (sensitivity = 82%, specificity = 74% (AUC 0.86 p < 0.001), PPV = 73%, NPV = 82%). Actigraphic parameters can reliably describe the overall severity of stroke patients with motor symptoms, supporting the addition of a wearable actigraphic system to the multi-parametric monitoring in stroke units.
format Online
Article
Text
id pubmed-9918210
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99182102023-02-11 Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit Reale, Giuseppe Iacovelli, Chiara Rabuffetti, Marco Manganotti, Paolo Marinelli, Lucio Sacco, Simona Furlanis, Giovanni Ajčević, Miloš Zauli, Aurelia Moci, Marco Giovannini, Silvia Crosetti, Simona Grazzini, Matteo Castiglia, Stefano Filippo Podestà, Matteo Calabresi, Paolo Ferrarin, Maurizio Caliandro, Pietro J Clin Med Article Actigraphy is a tool used to describe limb motor activity. Some actigraphic parameters, namely Motor Activity (MA) and Asymmetry Index (AR), correlate with stroke severity. However, a long-lasting actigraphic monitoring was never performed previously. We hypothesized that MA and AR can describe different clinical conditions during the evolution of the acute phase of stroke. We conducted a multicenter study and enrolled 69 stroke patients. NIHSS was assessed every hour and upper limbs’ motor activity was continuously recorded. We calculated MA and AR in the first hour after admission, after a significant clinical change (NIHSS ± 4) or at discharge. In a control group of 17 subjects, we calculated MA and AR normative values. We defined the best model to predict clinical status with multiple linear regression and identified actigraphic cut-off values to discriminate minor from major stroke (NIHSS ≥ 5) and NIHSS 5–9 from NIHSS ≥ 10. The AR cut-off value to discriminate between minor and major stroke (namely NIHSS ≥ 5) is 27% (sensitivity = 83%, specificity = 76% (AUC 0.86 p < 0.001), PPV = 89%, NPV = 42%). However, the combination of AR and MA of the non-paretic arm is the best model to predict NIHSS score (R(2): 0.482, F: 54.13), discriminating minor from major stroke (sensitivity = 89%, specificity = 82%, PPV = 92%, NPV = 75%). The AR cut-off value of 53% identifies very severe stroke patients (NIHSS ≥ 10) (sensitivity = 82%, specificity = 74% (AUC 0.86 p < 0.001), PPV = 73%, NPV = 82%). Actigraphic parameters can reliably describe the overall severity of stroke patients with motor symptoms, supporting the addition of a wearable actigraphic system to the multi-parametric monitoring in stroke units. MDPI 2023-02-02 /pmc/articles/PMC9918210/ /pubmed/36769826 http://dx.doi.org/10.3390/jcm12031178 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Reale, Giuseppe
Iacovelli, Chiara
Rabuffetti, Marco
Manganotti, Paolo
Marinelli, Lucio
Sacco, Simona
Furlanis, Giovanni
Ajčević, Miloš
Zauli, Aurelia
Moci, Marco
Giovannini, Silvia
Crosetti, Simona
Grazzini, Matteo
Castiglia, Stefano Filippo
Podestà, Matteo
Calabresi, Paolo
Ferrarin, Maurizio
Caliandro, Pietro
Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_full Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_fullStr Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_full_unstemmed Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_short Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_sort actigraphic sensors describe stroke severity in the acute phase: implementing multi-parametric monitoring in stroke unit
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918210/
https://www.ncbi.nlm.nih.gov/pubmed/36769826
http://dx.doi.org/10.3390/jcm12031178
work_keys_str_mv AT realegiuseppe actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT iacovellichiara actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT rabuffettimarco actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT manganottipaolo actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT marinellilucio actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT saccosimona actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT furlanisgiovanni actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT ajcevicmilos actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT zauliaurelia actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT mocimarco actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT giovanninisilvia actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT crosettisimona actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT grazzinimatteo actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT castigliastefanofilippo actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT podestamatteo actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT calabresipaolo actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT ferrarinmaurizio actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT caliandropietro actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit